Introduction to Organic Solar Cells

Dr Chris Fell

Solar Group Leader

CSIRO Energy Technology, Newcastle, Australia
Organic semiconductors

- Conductivity in polyacetylene – 1970s – Nobel Prize

 Alan J. Heeger Alan G. MacDiarmid Hideki Shirakawa

- Interacting P_z orbitals create chain of delocalised electron density

poly(phenylene vinylene) (PPV)
Why organic materials for solar cells?

- Room temperature
- Ambient pressure
- Solution-processing
Research activity in organic PV

- ISI - all databases
 - “Organic photovoltaics”
 - “Organic solar cells”
 - “Plastic photovoltaics”
 - “Plastic solar cells”
CSIRO organic PV – since 2005

- Division of Energy Technology
 - National Solar Energy Centre – Newcastle
 - Axial device design (cell structures)
 - Lateral device design (modules)

- Division of Molecular and Health Technologies – Melbourne
 - Long record of achievements in materials chemistry
Measuring efficiency to IEC60904
The single semiconductor device

Metal back contact (cathode)

Exciton (bound)

Transparent front contact (anode)

c-Si (300μm)

organic solar cell (100nm)

Al/Ca

organic semiconductor ~100nm

ITO/PEDOT:PSS

Transparent front contact (anode)

Al/Ca

Metal back contact (cathode)

Cathode

Anode

ITO/PEDOT:PSS

c-Si (300μm)

organic solar cell (100nm)
Splitting excitons: The planar heterojunction

anode donor acceptor cathode

poly (3-hexylthiophene) - P3HT [6,6]-phenyl-C61 butyric acid methyl ester - PCBM

HOMO LUMO

LUMO HOMO

Energy / eV

P3HT Total DOS

0 -1 -2 -3 -4 -5 -6 -7 -8 -9
20 15 10 5 0
Total DOS

PCBM Total DOS

0 -1 -2 -3 -4 -5 -6 -7 -8 -9
0 2 4 6 8 10 12 14
Total DOS

CSIRO - APVA Seminar, Organic Photovoltaics - March 19, 2010
Understanding open-circuit voltage

- Heterojunction – voltage can go beyond flat-band

1. Bands prior to assembly

2. Assembled device (planar heterojunction)

3. Illuminated to flat-band voltage

4. Illuminated beyond flat-band voltage
The bulk heterojunction device

- Mix donor and acceptor into one blend
- Greatly increases interface area for exciton dissociation
- Nanomorphology now critical
 - Choice of solvent
 - Annealing
- Penalties in voltage and transport
1: Exciton generation

2: Exciton dissociation

3: Charge transport

Understanding photocurrent
1: Exciton generation (optical excitation)

• How much light is coupled into the active layer?
 • Measure the optical properties of each layer, \(n(\lambda) \) and \(k(\lambda) \)
 • Use Fresnel equations to model multi-layer interference
Photon accounting

Active Layer 1:1 Wavelength Distribution 38nm
Active Layer 1:1 Wavelength Distribution 81nm
Active Layer 1:1 Wavelength Distribution 252nm

ENERGY

EXCITONS

38nm active layer
81nm active layer
252nm active layer

CSIRO - APVA Seminar, Organic Photovoltaics - March 19, 2010
Internal quantum efficiency

Calculation: IQE decreases with thickness of active layer.

Measurement: Short-circuit current density and cell voltage vary with active layer thickness.

IQE decreases with thickness of active layer.
2: Exciton dissociation

- Two-stage process
 - Rapid dissociation to polaron pair
 - Polaron pair separation efficiency – FIELD DEPENDENT

- Photocurrent is voltage-dependent!
3: Charge transport - hopping

- Space charge contribution to the electric field

\[
\frac{dE(x)}{dx} = \frac{e}{\varepsilon \varepsilon_0} [p(x) - n(x)]
\]

- Transport equation for electrons

\[
J_e(x) = e \mu_e (E, T) n(x) E(x) + D(\mu, T) \frac{dn(x)}{dx}
\]

- Continuity equation for electrons

\[
\frac{dn(x)}{dt} = \frac{1}{e} \frac{dJ_e(x)}{dx} + k_d S(x) - R(x)
\]
Bi-molecular recombination

- Hopping transport
 - Band-band (intrinsic) recombination rate not important

- Bi-molecular recombination rate dominated by the time it takes for carriers to meet

- Langevin-type recombination

\[R(x) = \frac{q}{\varepsilon \varepsilon_0} \min\{\mu_e, \mu_h\} n(x)p(x) \]

- Higher mobility means greater recombination!
Opportunities to increase performance

• Improving absorption
 • Narrow spectral bandwidth limits capture of AM1.5

• Optimise band structure
 • Adjusting heterojunction band offsets to minimise energy loss whilst still splitting exciton

• Improving mobility
 • Higher mobility materials
 • Interdigitated donor-acceptor designs for simpler carrier pathways

• Optimising optical interference
 • Maximise light-trapping in the active layer

• Reducing exciton binding energy
 • The biggest single obstacle to reaching the Shockley-Queisser limit
CSIRO Energy Technology
Dr Chris Fell
Solar Group Leader

Phone: +61-2-4960-6032
Email: chris.fell@csiro.au
Web: www.csiro.au

Thank you