

Introduction to Organic Solar Cells

Dr Chris Fell

Solar Group Leader

CSIRO Energy Technology, Newcastle, Australia

Organic semiconductors

• Conductivity in polyacetylene – 1970s – Nobel Prize

Alan J. Heeger Alan G. MacDiarmid Hideki Shirakawa

• Interacting P_z orbitals create chain of delocalised electron density

poly(phenylene vinylene) (PPV)

Why organic materials for solar cells ?

Room temperature Ambient pressure Solution-processing

Research activity in organic PV

• ISI - all databases

- "Organic photovoltaics"
- "Organic solar cells"
- "Plastic photovoltaics"

Year of publication

700

Progress in efficiency

CSIRO organic PV – since 2005

• Division of Energy Technology

- National Solar Energy Centre Newcastle
- Axial device design (cell structures)
- Lateral device design (modules)

- Division of Molecular and Health Technologies Melbourne
 - Long record of achievements in materials chemistry

Measuring efficiency to IEC60904

CSIRO

CSIRO.

The single semiconductor device

CSIRO - APVA Seminar, Organic Photovoltaics - March 19, 2010

Splitting excitons: The planar heterojunction

CSIRO - APVA Seminar, Organic Photovoltaics - March 19, 2010

Understanding open-circuit voltage

• Heterojunction - voltage can go beyond flat-band

1. Bands prior to assembly

3. Illuminated to flat-band voltage

CSIRO - APVA Seminar, Organic Photovoltaics - March 19, 2010

2. Assembled device (planar heterojunction)

4. Illuminated beyond flat-band voltage

The bulk heterojunction device

- Mix donor and acceptor into one blend
- Greatly increases interface area for exciton dissociation
- Nanomorphology now critical
 - Choice of solvent
 - Annealing
- Penalties in voltage and transport

Understanding photocurrent

1: Exciton generation

2: Exciton dissociation

3: Charge transport

1: Exciton generation (optical excitation)

• How much light is coupled into the active layer ?

- Measure the optical properties of each layer, $n(\lambda)$ and $\kappa(\lambda)$
- Use Fresnel equations to model multi-layer interference

Photon accounting

Internal quantum efficiency

2: Exciton dissociation

• Two-stage process

- Rapid dissociation to polaron pair
- Polaron pair separation efficiency FIELD DEPENDENT

• Photocurrent is voltage-dependent!

CSIRO

3: Charge transport - hopping

• Space charge contribution to the electric field

$$\frac{dE(x)}{dx} = \frac{e}{\varepsilon\varepsilon_0} \left[p(x) - n(x) \right]$$

• Transport equation for electrons

$$J_{e}(x) = e \mu_{e}(E,T) n(x) E(x) + D(\mu,T) \frac{dn(x)}{dx} \qquad \text{energy}$$

• Continuity equation for electrons

$$\frac{dn(x)}{dt} = \frac{1}{e} \frac{dJ_{e}(x)}{dx} + k_{d}S(x) - R(x) \qquad \xrightarrow{\text{field direction}}$$

Bi-molecular recombination

Hopping transport

- Band-band (intrinsic) recombination rate not important
- Bi-molecular recombination rate dominated by the time it takes for carriers to meet
- Langevin-type recombination

$$R(x) = \frac{q}{\varepsilon \varepsilon_0} \min\{\mu_e, \mu_h\} n(x) p(x)$$

• Higher mobility means greater recombination!

Opportunities to increase performance

Improving absorption

- Narrow spectral bandwidth limits capture of AM1.5
- Optimise band structure
 - Adjusting heterojunction band offsets to minimise energy loss whilst still splitting exciton

• Improving mobility

- Higher mobility materials
- Interdigitated donor-acceptor designs for simpler carrier pathways
- Optimising optical interference
 - Maximise light-trapping in the active layer
- Reducing exciton binding energy
 - The biggest single obstacle to reaching the Shockley-Queisser limit

Thank you

CSIRO Energy Technology

Phone: +61-2-4960-6032 Email: chris.fell@csiro.au

Dr Chris Fell

Solar Group Leader

Web: www.csiro.au

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

