Development of Al₂O₃ thin film on polydimethylsiloxane (PDMS) using thermal atomic layer deposition and its application to improve the stability of organic-inorganic solar cells

Eun Young Choi¹, JinCheol Kim² and Nochang Park¹

¹ Electronic Convergence Material & Device Research Centre, Korea Electronics Technology Institute, Seong-Nam, Republic of Korea
² The Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
E-mail: ncpark@keti.re.kr

Based on our research, we found out that Al₂O₃ layer has a good moisture property. We achieved water vapor transmission rate (WVTR) of 1.84 x 10⁻² g m⁻² d⁻¹ at 45 °C–100 %RH. For this, we deposited 50nm of Al₂O₃ layer at 95 °C via thermal ALD.

In this work, we formed Al₂O₃ layer on polydimethylsiloxane (PDMS) to improve the moisture barrier property. We employed Ca detector to examine the moisture barrier property of thin film. The WVTR value of 30nm Al₂O₃ layer on PDMS was measured to be (). Interestingly, we found out that the WVTR value of Ca/PDMS/Al₂O₃ has higher value than that of Ca/Al₂O₃/PDMS. It is attributed to the decrease of moisture path, which is result from the bonding between Al₂O₃ and PDMS. In order to test the moisture barrier property of PDMS/ Al₂O₃ layer, mesoporous perovskite devices, with spiro-OMeTAD as hole transport layer (HTM) encapsulated by 30 nm Al₂O₃ film on PDMS, are exposed to 45 °C–85 %RH for 400 hours and its stability is monitored. We successfully achieve excellent durability test results for mesoporous (HC(NH₂)₂PbI₃)₀.₈₅(CH₃NH₃PbBr₃)₀.₁₅/Spiro-OmeTAD devices encapsulated by 30 nm Al₂O₃ on PDMS with less than 7% drop in PCE after 400 hours of exposure to 45 °C–85 %RH.