Efficient 1 cm² mesoscopic perovskite solar cell on ITO substrate

Meng Zhang, Benjamin Wilkinson, Yuanxun Liao, Jianghui Zheng, Cho Fai Jonathan Lau, Jincheol Kim, Jueming Bing, Martin A. Green, Shujuan Huang, Anita Wing-Yi Ho-Baillie

APSRC-2018
04/12/2018

Australian Centre for Advanced Photovoltaics
School of Photovoltaic and Renewable Energy Engineering
University of New South Wales
Perovskite solar cells (PSCs)
Perovskite

Hybrid metal halide perovskite ABX_3

- Large absorption coefficient
- Low exciton binding energy
- High charge mobility
- Tolerance to defects
- Low-cost fabrication

Challenges:

Long-term stability

Large area device
First 1 cm\(^2\) PSC with certified efficiency

Certified PV parameters
Area: 1.017 cm\(^2\)
\(J_{SC}=20.61\) mA/cm\(^2\)
\(V_{OC}=1090\) mV
FF=66.8%
Efficiency=15.0%

Certified 1 cm² PSC

Certified PV parameters
Area: 1.022 cm²
$J_{SC}=21.48$ mA/cm²
$V_{OC}=1081$ mV
FF=78.4%
Efficiency=18.2%

Certified 1 cm2 PSC

Certified PV parameters
Area: 1.025 cm2
J_{SC}=22.60 mA/cm2
V_{OC}=1122 mV
FF=75.7%
Efficiency=19.2%

Certified 1 cm2 PSC

n-i-p structure (meso)

Certified PV parameters
Area: 1.000 cm2
$J_{SC}=22.59$ mA/cm2
$V_{OC}=1143$ mV
FF=75.7%
Efficiency=19.6%

Certified 1 cm² PSC

Certified PV parameters
Area: 0.992 cm²
$J_{sc} = 24.67$ mA/cm²
$V_{oc} = 1104$ mV
FF = 72.3%
Efficiency = 19.7%

Certified 1 cm2 PSC

n-i-p structure (meso)

Certified PV parameters
Area: 0.991 cm2
J_{SC}=24.92 mA/cm2
V_{OC}=1125 mV
FF=74.5%
Efficiency=20.9%

Summary of literatures

Efficient device structure for 1 cm2 PSC:
- n-i-p meso > p-i-n planar

Strategies to get high efficiency 1 cm2 PSC:
- Charge extraction layer
- Interfacial engineering
- Film deposition method
Spray anti-solvent

Spray anti-solvent

Gas-quenching

Compressed gas

Gas-quenching (Gas-assisted spin-coating)

In-house measured
PCE=19.4% FAMA-Cs
PCE=19.6% FAMA-Rb
PCE=20.0% FAMA-Rb (w/ AR layer)

Advantage:
Reduce toxic chemical usage
Fresh atmosphere for fabrication
Good reproducibility

0.65 cm² device
New strategy to improve large area device

Charge extraction layer
- Interfacial engineering
- Film deposition method

Substrate optimization

<table>
<thead>
<tr>
<th>Substrate & structure</th>
<th>Certification Time</th>
<th>Publication Time</th>
<th>J_{sc} [mA/cm2]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
<th>Area (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTO-planar</td>
<td>Feb 15</td>
<td>Oct 15</td>
<td>20.6</td>
<td>1.09</td>
<td>0.67</td>
<td>15.0</td>
<td>1.10</td>
</tr>
<tr>
<td>N/A</td>
<td>Jun 15</td>
<td>N/A</td>
<td>19.3</td>
<td>1.07</td>
<td>0.75</td>
<td>15.6</td>
<td>1.02</td>
</tr>
<tr>
<td>FTO-planar</td>
<td>Oct 15</td>
<td>Sep 16</td>
<td>21.5</td>
<td>1.08</td>
<td>0.78</td>
<td>18.2</td>
<td>1.02</td>
</tr>
<tr>
<td>FTO-meso</td>
<td>Feb 16</td>
<td>May 16</td>
<td>22.6</td>
<td>1.14</td>
<td>0.76</td>
<td>19.6</td>
<td>1.00</td>
</tr>
<tr>
<td>FTO-meso</td>
<td>Mar 16</td>
<td>Jun 17</td>
<td>24.7</td>
<td>1.10</td>
<td>0.72</td>
<td>19.7</td>
<td>0.99</td>
</tr>
<tr>
<td>FTO-meso</td>
<td>Jul 17</td>
<td>Jul 18</td>
<td>24.9</td>
<td>1.13</td>
<td>0.75</td>
<td>20.9</td>
<td>0.99</td>
</tr>
</tbody>
</table>
FTO vs ITO

Transparency

Stability upon heat treatment

Meso-TiO$_2$ layer requires high temperatures annealing

ITO-based mesoscopic device suffered from high series resistance (R_s) and low FF
New electrode for 1 cm2 device
ITO-based meso-PSC

Geometry optimization

Mask area: 0.159 cm²
Jsc = 22.7 mA/cm²
Voc = 1088 mV
FF = 81.5%
PCE = 20.1%

Mask area: 0.159 cm²
Jsc = 22.7 mA/cm²
Voc = 1090 mV
FF = 80.4%
PCE = 19.9%

Negative contact

R_s (Ωcm²)

Square

Rectangular

Strip

FF = 72%

J-V simulation

FF = 77%
Geometry optimization

![Image of solar cells with different geometries](image)

<table>
<thead>
<tr>
<th></th>
<th>J_{SC} (mA/cm2)</th>
<th>V_{OC} (mV)</th>
<th>FF (%)</th>
<th>Sim. FF (%)</th>
<th>R_s (Ωcm2)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>22.1</td>
<td>1150</td>
<td>72.2</td>
<td>71.7</td>
<td>7.5</td>
<td>18.4</td>
</tr>
<tr>
<td>Rectangular</td>
<td>22.4</td>
<td>1156</td>
<td>75.0</td>
<td>75.8</td>
<td>5.1</td>
<td>19.5</td>
</tr>
<tr>
<td>Strip</td>
<td>22.4</td>
<td>1163</td>
<td>76.6</td>
<td>77.4</td>
<td>4.9</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Devices using strip design on FTO and ITO

Improving J_{sc} without compromising FF

Substrate limitation for mesoscopic PSCs can be overcame by proper design of electrode
Effectiveness of the electrode design

Skinnier electrode design is more effective on less-conductive substrates.
ITO thickness optimization on strip device

Graphs:

- **Energy loss** (%), \(R_{\text{Sheet}} \) (\(\Omega /\text{sq} \)) vs. ITO thickness (nm)
- **Efficiency** (%) vs. ITO thickness (nm)

Table:

<table>
<thead>
<tr>
<th>Thickness of ITO [nm]</th>
<th>(J_{sc}) [mA/cm²]</th>
<th>(V_{oc}) [mV]</th>
<th>(FF) [%]</th>
<th>PCE [%]</th>
<th>(R_s) [(\Omega) cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>23.2</td>
<td>23.2</td>
<td>1150</td>
<td>1161</td>
<td>74.9</td>
</tr>
<tr>
<td>150</td>
<td>22.9</td>
<td>23.2</td>
<td>1150</td>
<td>1159</td>
<td>76.1</td>
</tr>
<tr>
<td>200</td>
<td>22.8</td>
<td>23.0</td>
<td>1150</td>
<td>1149</td>
<td>76.8</td>
</tr>
<tr>
<td>250</td>
<td>22.7</td>
<td>22.8</td>
<td>1150</td>
<td>1149</td>
<td>77.1</td>
</tr>
<tr>
<td>300</td>
<td>22.6</td>
<td>22.7</td>
<td>1150</td>
<td>1145</td>
<td>77.4</td>
</tr>
<tr>
<td>350</td>
<td>22.5</td>
<td>22.4</td>
<td>1150</td>
<td>1150</td>
<td>77.5</td>
</tr>
</tbody>
</table>
Optimized devices

Device sent for certification:
In-house measured PCE = 20.0%

<table>
<thead>
<tr>
<th>Scan direction</th>
<th>J_{SC} (mA/cm2)</th>
<th>V_{OC} (mV)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OC} to J_{SC}</td>
<td>23.4</td>
<td>1157</td>
<td>76.1</td>
<td>20.6</td>
</tr>
<tr>
<td>J_{SC} to V_{OC}</td>
<td>23.4</td>
<td>1155</td>
<td>74.2</td>
<td>20.0</td>
</tr>
</tbody>
</table>

PCE = 19.63%
$J_{SC} = 23.2$ mA/cm2
$V_{OC} = 1142$ mV
FF = 75.8%

strip device
250 nm ITO
w/ AR layer
Conclusions

- Proper electrode design overcomes the substrate limitation of mesoscopic PSCs.
- ITO-based mesoscopic PSCs are more efficient than FTO due to improved photocurrent without compromising FF.
- When ITO thickness is at 250 nm, the conductivity of the substrate is adequate (20 Ω/sq) and optical loss is sufficiently low (20%) for decent FF and J_{SC} to be achieved.
- Certified efficiency of 19.63% on 1.02 cm2 is the highest for ITO-based mesoscopic PSCs. And also the highest for PSCs fabricated by gas-quenching.
Acknowledgement

Thanks for your attention!
Other perovskite composition

Default perovskite composition:

\[
\text{FA}_{0.75}\text{MA}_{0.15}\text{Cs}_{0.05}\text{PbI}_{2.55}\text{Br}_{0.45}
\]

5% Cs 15% Br

5% Cs 5% Br

5% Rb 15% Br

Strip device

<table>
<thead>
<tr>
<th>J\text{sc} (mA/cm^2)</th>
<th>V\text{oc} (mV)</th>
<th>FF</th>
<th>R_S (\Omega cm^2)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.0</td>
<td>1081</td>
<td>0.692</td>
<td>9.6</td>
<td>17.2</td>
</tr>
<tr>
<td>23.3</td>
<td>1083</td>
<td>0.766</td>
<td>5.1</td>
<td>19.4</td>
</tr>
<tr>
<td>23.4</td>
<td>1099</td>
<td>0.770</td>
<td>5.0</td>
<td>19.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J\text{sc} (mA/cm^2)</th>
<th>V\text{oc} (mV)</th>
<th>FF</th>
<th>R_S (\Omega cm^2)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td>1155</td>
<td>76.4</td>
<td>5.0</td>
<td>19.9</td>
</tr>
</tbody>
</table>
Large area PSCs

Record efficiency of small/large area devices

PSCs need to provide competitive performance on large scale devices