Faculty of Engineering
School of Photovoltaic and Renewable Energy Engineering

Chemical processed AgBiS$_2$ deposition as an absorber layer for high performance solar cell application

2018 APSRC Sydney, 5 Dec 2018

Yasaman Tabari-Saadi1, Kaiwen Sun1, Trevor Young1, Fangyang Liu1, Martin Green1, Xiaojing Hao1

1. School of Photovoltaic and Renewable Energy Engineering The University of New South Wales
Background and literature review

Why developing AgBiS$_2$
- High potential of high efficiency
- Non-toxic and earth abundant elements
- Crystal phase stability
- Pure single phase compound
- Tunable band gap by adding dopants

Recent synthesizing method
- Sonochemical
- Solvothermal and hydrothermal
- Sol gel
- SILAR
- Low cooling method

Recent applications for AgBiS$_2$
- Thermoelectric applications
- As a sensitizer in semiconductor-sensitized solar cell
- As an absorber in thin film solar cell

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band gap</td>
<td>1.2-1.3 eV</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>10^5 cm$^{-1}$</td>
</tr>
<tr>
<td>Carrier concentration</td>
<td>2.6×10^{18} cm$^{-3}$</td>
</tr>
<tr>
<td>Mobility</td>
<td>1.1 cm2V$^{-1}$ s$^{-1}$</td>
</tr>
</tbody>
</table>

Background and literature review

What should be done to further improve the efficiency

- Step 1 (Optimizing absorber properties)
 - Optimizing structural properties (composition ratio, crystal sizes, phases and orientation)
 - Optimizing optical and electrical properties (optical band gap, absorption coefficient, mobility and lifetime)

- Step 2 (Optimizing device configuration)
 - Trying different device configuration
 - Optimizing electron and hole transport layers
Experiment

- Solution based deposition of AgBiS_2

- Deposition
- Spinning
- Drying

Heat treatment
1) AgBiS$_2$ polycrystalline formation by chemical process
Ternary compound with normal valence states of Ag\(^+\)Bi\(^{3+}\)S\(^{2-}\) has been formed after heat treatment process.
DMSO is the suitable solvent for spin coating compact layer of AgBiS$_2$ on top of FTO.
2) Solvent engineering for making AgBiS$_2$ solution

- **0.6M solution**
- **0.4M solution**
- **0.2M solution**

The best solution concentration for making uniform film on top of TiO$_2$ layer is 0.2M.
3) Optical characterization

<table>
<thead>
<tr>
<th>Atomic Ratio</th>
<th>Band gap</th>
<th>α (1/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag/Bi=1</td>
<td>1.30 eV</td>
<td>$>3\times10^5$</td>
</tr>
<tr>
<td>Ag/Bi=0.8</td>
<td>1.25 eV</td>
<td></td>
</tr>
<tr>
<td>Ag/Bi=1.2</td>
<td>1.20 eV</td>
<td></td>
</tr>
</tbody>
</table>
Result and discussion

4) Solar device fabrication

<table>
<thead>
<tr>
<th></th>
<th>Jsc mA/cm²</th>
<th>Voc (mV)</th>
<th>FF%</th>
<th>Eta%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.49</td>
<td>208.40</td>
<td>41.50</td>
<td>0.47</td>
</tr>
<tr>
<td>2</td>
<td>5.98</td>
<td>213.10</td>
<td>41.20</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>5.11</td>
<td>205.29</td>
<td>41.18</td>
<td>0.43</td>
</tr>
</tbody>
</table>

The optimized thickness of absorber layer in TiO₂/AgBiS₂ configuration is 200nm.
Result and discussion

4) Solar device fabrication
Conclusion

- Poly crystalline-AgBiS$_2$ formation by chemical process.

- Stable compound in various composition ratio Ag/Bi and heat treatment temperature.

- Tuneable optical bandgap by composition ratio (Ag/Bi=1 band gap=1.3eV).

- High absorption coefficient (~ 3×10^5).

- Non-uniform Ag distribution at the interface reduced the efficiency.
Acknowledgement

Thank you for your attention!