Biased Annealing for Industrial Mitigation of LeTID in Multicrystalline PERC Solar Cells

2019 Asia-Pacific Solar Research Conference

Dr Phillip Hamer
L. Wang, M. Pollard, C. Chan,
Outline

• LeTID mitigation and contact resistance increase
• Hydrogen simulation and re-distribution
• Biased annealing to suppress contact resistance
• Process development
• Industrial prototype
Outline

• LeTID mitigation and contact resistance increase
• Hydrogen simulation and re-distribution
• Biased annealing to suppress contact resistance
• Process development
• Industrial prototype
Fill Factor Losses during LeTID Mitigation

- Modified firing processes and subsequent thermal processing can mitigate LeTID
- Extended thermal processes post-firing lead to drop in fill-factors

0.15 FF loss \rightarrow 20% loss in efficiency

Fill Factor Losses during LeTID Mitigation

- Unstable at room temperature
- Investigation reveals this is due to an increase in front contact resistance

![Graph showing Fill Factor Losses during LeTID Mitigation](image)

- **353°C, 2 hours**
- **Before**
 - 1 mA RB
 - 1 mA FB
 - 5 mA FB
 - 25 mA FB
 - 50 mA FB

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>1 mA RB</th>
<th>1 mA FB</th>
<th>5 mA FB</th>
<th>25 mA FB</th>
<th>50 mA FB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.28±0.02</td>
<td>92±5</td>
<td>76±12</td>
<td>38±7</td>
<td>14.6±1.0</td>
<td>10.8±0.9</td>
</tr>
<tr>
<td>Gradient</td>
<td>32.34±0.07</td>
<td>40±8</td>
<td>48±13</td>
<td>31±7</td>
<td>34.7±1.2</td>
<td>35.5±1.3</td>
</tr>
</tbody>
</table>

Chan, C., et al., (2017), Solar RRL, 1(11), 1700129
Hydrogen Re-distribution

- Common assumption is that hydrogen is distributed near-uniformly throughout the bulk during metal cofiring
- With subsequent thermal annealing there is a driving force for hydrogen to move back to the surface
- Strong electric fields
- Amphoteric nature of hydrogen

Outline

• LeTID mitigation and contact resistance increases
• Hydrogen simulation and re-distribution
• Biased annealing to suppress contact resistance
• Process development
• Industrial prototype
Initial Experiments

4 terminal I-V measurements, 0.2 V forward bias between measurements, 350°C, 4 hours
Initial Experiments

4 terminal I-V measurements, 0.2 V forward bias between measurements, 350°C, 4 hours
Dependence on Applied Bias

In-Situ Observations

At room temperature

4 hours at 350°C

Degradation

Anneal: 400°C, 2 hours

Light Soak: 70°C, 1 sun illumination

Outline

• LeTID mitigation and contact resistance increases
• Hydrogen simulation and re-distribution
• Biased annealing to suppress contact resistance
• Process development
• Industrial prototype
Process Development at UNSW

- Application of reverse bias during annealing can suppress FF loss due to R_S increase (hydrogen induced contact resistance)
- Electric field prevents H building up near surface/contact regions \rightarrow cells can be annealed for longer periods of time required to suppress LeTID
- We have designed and built a biased annealing prototype tool
 - 6” capable
 - Polarity of bias can be changed
 - Automatic IV measurement and bias control
Development Work – Temperature and Bias

- Light Soaking 70°C 1 sun
- High T, R_S increase
- Low T, incomplete mitigation
- Apparent acceleration of recovery

80 min anneal

- 400°C 3V RB
- 350°C 3V RB
- Control
- 350°C No bias
- 400°C No bias
Development Work - Cooling

- Post-Anneal cooling critical to process
- Slow cooling without reverse bias → R_S problems
- Slow cooling with switched bias → minimized degradation

![Graph showing the effect of switched bias and no bias on V_{oc} ratio over time. The graph shows a decrease in V_{oc} ratio with time for both switched bias and no bias conditions, but the switched bias shows a more gradual decrease compared to no bias.](image-url)
LeTID Mitigation: Finished Cells

- Combining biased annealing with switched cooling leads to optimal results
- Not only avoids any degradation but a slight boost to efficiency

Graphs:
- Relative change in Voc
 - Dark annealing with bias
 - Dark annealing without bias
 - Control
- Relative change in FF
- Relative change in Efficiency

Images:
- Initial 0h (after annealing)
- 21h LS
- 570h LS
- 1000h LS
- PL counts/s
Defects and Degradation Behaviour

<table>
<thead>
<tr>
<th></th>
<th>As Fired</th>
<th>Annealed</th>
<th>23h LS</th>
<th>1160h LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annealed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PL counts/s

23h LS
As Fired
1160h LS
As Fired
Industrial Prototype

- Process can be performed in modified commercial “coin-stacker”
- Already a viable commercial process
- Prototype installed at UNSW and undergoing modification
- Intermittent applied bias to reduce power consumption?
Industrial Prototype

- Process can be performed in modified commercial “coin-stacker”
- Already a viable commercial process
- Prototype installed at UNSW and undergoing modification
- Intermittent applied bias to reduce power consumption?
Summary

- Many LeTID approaches lead to problems with contact resistance issues on finished cells
- Use of applied reverse bias during anneal can suppress these problems and lead to superior mitigation
- Can be implemented with minor modifications to existing, high throughput commercial tools

Acknowledgements

- UNSW – Chandany Sen
- Oxford – Sebastian Bonilla, Hantao Li, Peter Wilshaw
- Work is supported by ACAP Fellowship,
- This Program has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). The views expressed herein are not necessarily the views of the Australian Government, and the Australian Government does not accept responsibility for any information or advice contained herein