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Abstract 

This study quantifies the AC power degradation rates (%/year) of a subset of the PV systems 

located at the Desert Knowledge Australia Solar Centre (DKASC). The analytical techniques 

of linear regression (LR) and classical seasonal decomposition (CSD) were utilised in 

conjunction with the metrics of Performance Ratio (PR) and Weather Corrected Performance 

Ratio (WCPR) to explore the effect of methodology on calculated degradation rates. In 

addition, three sources of input irradiance data were also explored. The results indicate that 

both the choice of methodology and irradiance input had a notable impact on the calculated 

degradation rates. In particular, this study found the calculated degradation rates decreased by 

~0.2% (absolute); when onsite measured irradiance was replaced with the higher quality 

irradiance data source measured nearby at the Alice Springs airport (~5km away) by the 

Australian Bureau of Meteorology (BoM). Importantly, this study determined that 

degradation rates cannot be calculated via the use of the BoM satellite derived irradiance 

dataset, which is available in a 5x5km grid across the entire Australian mainland, due to 

inconsistent bias in the dataset over time.    

For the combined WCPR-LR method, the mean and median annual degradation rates of the 

16 systems analysed were 0.81% and 0.75% respectively, varying between 0.28%/year and 

1.49%/year. For the mono/polycrystalline PV systems (12 of the 16 systems analysed) the 

mean and median degradation rates decreased to 0.68% and 0.69% respectively. This 

collection of degradation rates fall within the mean and median system level degradation rates 

reported within the literature for x-Si technologies (mean = 0.69%-0.81%, median = 0.61%-

0.69%)  (Jordan et al. 2016)). The results from this study also showed that the single roof 

mounted PV system at DKASC has been degrading at a faster rate than the same module 

technology in a rack mounted configuration. 

1. Introduction  

Quantifying the long term performance of photovoltaic (PV) systems is essential for 

accurately predicting the energy delivery and economic viability of PV systems over their 

lifespans. The metric commonly utilised to quantify output power decline of PV modules and 

systems over time is known as the degradation rate. In their compendium of PV degradation 

rates, (Jordan et al. 2016) report median system level degradation rates for x-Si PV 

technologies in the range of 0.61-0.69%/year with mean values of 0.69-0.81%/year. The 

reported module level degradation rates for x-Si were median values in the 0.4-0.67% range 

and mean values in the range of 0.51-0.91%/year.  

The compendium reported that the amount of published data on PV degradation rates has 

increased in recent years, with more than 11000 degradation rates reported in almost 200 
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studies from 40 different countries. Of these 200 studies, only 2 studies from Australia were 

located (Muirhead et al. 1995, Hawkins et al. 1996), dating back to modules installed in the 

1980s. Based on the studies reviewed and referenced in the compendium (Jordan et al. 2016), 

no studies of degradation rates have been reported in the past two decades for PV systems in 

Australia. Hence recent Australian studies into the long term performance of PV systems can 

provide invaluable information for improving predictions of PV power and economic viability 

in the Australia context. 

Importantly, the Jordan et al. compendium indicates that degradation rates and their 

mechanisms may also be impacted by hotter climates and mounting configurations that lead 

to sustained higher temperatures (Jordan et al. 2012, Jordan et al. 2016). In addition, the 

compendium indicates that the statistical procedures employed, including (but not limited to) 

methodology and sampling can also influence the determined degradation rate. Similarly, 

(Phinikarides et al. 2015) review of PV degradation rate methodologies showed that the 

determined degradation rate was not only technology and site dependent but was also 

methodology dependent.  

2. Methodology 

(Phinikarides et al. 2015) review into PV degradation rate methodologies identified four 

primary statistical analysis methods and four general categories of performance metrics. 

These methods and metric categories are listed in Table 1. 

Table 1: Typical methods and metrics used in degradation rate analyses 

Statistical Methods Performance Metrics 

Linear Regression (LR) Electrical parameters from IV curves ς indoor or 
outdoor conditions and corrected to STC. 

Classical Seasonal Decomposition (CSD) Regression models: Photovoltaic for Utility Scale 
Application (PVUSA) and Sandia models 

Auto Regressive Integrated Moving Average 
(ARIMA) 

Normalised ratings: Performance ratio (PR), 
Weather Corrected Performance Ratio (WCPR) 
and PMPP/G 

Locally Weighted Scatterplot Smoothing (LOESS) Scaled ratings: PMPP/Pmax, PAC/Pmax and kWh/kWp. 
 

(Phinikarides et al. 2015) indicated that that the IV method with degradation rates calculated 

by the percentage error (PE) between two consecutive temporal ratings produced the lowest 

degradation rates. The linear regression method was found to produce results with 

considerable variations and uncertainty. The CSD method produced the highest degradation 

rates for mono and multi crystalline silicon technologies, but with lower uncertainty than the 

LR method. Whilst the ARIMA and LOESS methods, albeit less popular, produced results 

with low variation and uncertainty and with good agreement across the two metrics.  

The review also indicated that a minimum testing period of 3-5 years was found to be 

necessary in order to obtain accurate measurements of the degradation rate from field 

measurements. In other words, the uncertainty of the statistical method employed declined 

with increasing observation time, as random variations and seasonality have a smaller impact 

on the underlying trend (Phinikarides et al. 2015).  



 

Finally, the statistical methods that can be employed to calculate degradation rates are 

dependent on the data available. For instance in this study IV measurements are not available, 

hence calculation of degradation rates with the IV performance metric are not possible. 

The work presented in this study aims to quantify the AC power degradation rates of PV 

systems located within the hot dry climate of Alice Springs (NT). Further, this paper 

investigates the impact of methodology choice by comparing degradation rates calculated via 

two performance metrics, PR and WCPR, the two statistical methods of linear regression and 

classical seasonal decomposition and three sources of input irradiance data.  Analysis of the 

degradation rates via the ARIMA and LOESS methods are not presented within this paper, 

but will be investigated in future planned work. 

2.1. Performance Metrics ï Performance Ratio and Weather Corrected Performance 

Ratio 

The Performance Ratio (PR) is a metric, defined in IEC 61724, which measures the overall 

effect of losses on a PV system by comparing the ratio of the PV system output with the 

output from an ideal system in the same array plane, but with no losses due to temperature, 

incomplete utilisation of irradiance, system component inefficiencies or failures (IEC 1998). 

The Weather Corrected Performance Ratio (WCPR) is a variant of the PR which corrects for 

the losses due to temperature. The equations for the two metrics are, 
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where PAC is the measured AC electrical generation (kW), PSTC is the rated power of the array 

under standard test conditions, g is the temperature coefficient of the array maximum power, 

Tc-i is the cell temperature at a given point in time (i) and Tc-avg is the average cell temperature 

of the array over the period of data analysed. 

PV cell temperature in this study was calculated using the Sandia module and cell temperature 

models (King et al. 2004), with options: module type = Glass/cell/polymer sheet and mount = 

open rack. The average cell temperature was calculated using the POA weighted average cell 

temperature method as presented in (Dierauf et al. 2013). 

2.2. Statistical Methods ï Linear Regression and Classical Seasonal Decomposition 

The statistical method of linear regression, simply applies ordinary least squares (OLS) to 

determine a linear line of best fit to the data series of interest. The degradation rate is then 

simply the slope of the line of best fit. The statistical model assumed in OLS is of the form 

ώ άὼ ὦ where y represents the modelled or fitted values and ά and ὦ are the variables 

being solved for. ά and ὦ are ultimately determined by minimising the sum of squared 

residuals between the fitted line and the dataset. 

Classical Seasonal Decomposition (CSD) works on the concept that the long term trend of a 

data series consist of the 3 components of trend, seasonality and the residual. For PV 

performance analysis, the trend can generally be extracted by applying a 12 month moving 

average on the data series. Standard linear regression can then be applied to the trend line to 

calculate the degradation rate. The ñseasonal_decomposeò function within Pythonôs 

Statsmodels package was utilised to undertake CSD in this study, an example of which is 

presented in Figure 1 for the system labelled ñ3 BP Solarò at the DKASC. 



 

 

Figure 1: Seasonal decomposition of the Weekly PR for system ó3 BP Solarô 

2.3. Data Filtering 

(Jordan et al. 2014) highlighted that a combination of binning, data filtering and assessing 

data from the same time period each year has been shown to reduce degradation rate 

uncertainty. However, it was also highlighted that the filtering process may not only affect the 

uncertainty but the calculated degradation rate itself. This study has applied the ñElements of 

a Standard Methodò outlined within the study by (Jordan et al. 2014) with a few caveats. The 

general methodology utilised in this study was: 

2.3.1. Data integrity 

1. Time shifts ï Time shifts observed within the data sets were corrected for. Time shifts 

were determined by visually inspecting the time series data in comparison to weather data 

from the BoM. Time shifts were also observed by comparing data from one year to the 

next.  

2. Missing data was flagged and excluded from the analysis. 

2.3.2. Data Cleaning: 

1. Stability filter ï Used to reduce noise caused by variable days. Two stability filters were 

applied in this analysis, POA irradiance and a module temperature filter. The filters were 

applied by calculating the difference between consecutive time stamps then excluding any 

data points which exceeded the standard deviation calculated from the distributions of the 

absolute difference. The limits were defined as ‘ „ of the absolute differences. 

2. POA Irradiance filter ï Used to reduce the uncertainty of the calculated degradation rate, 

by applying an upper and lower boundary of the irradiance data which can be used in the 

analysis. The POA irradiance limits were determined by a visual analysis of the dataset 

and were set at 600 and 1200 W/m
2
 respectively. 

3. Fixed Outlier filter ï Used to reduce the effect of un-documented maintenance events or 

shading. The fixed outlier filter in this study was applied via fixed PR/WCPR limits. 

(Jordan et al. 2014) suggested the ratio of power production over irradiance as a metric for 



 

the outlier filter. Such a metric is essentially a calculation of the PR. The upper and lower 

Outlier limits were set as PR/WCPR of 0.5 and 1.1 respectively. 

It should be noted that a too tightly defined fixed outlier filter can significantly influence the 

calculated degradation rates. For example, Figure 2 presents the frequency distributions of the 

5minute PRôs calculated for system ñ8 Kanekaò across the entire data set (left), 2009 (middle) 

and 2015 (right). The light blue shaded regions denote the data that falls within the 25
th
 and 

75
th
 quartiles, calculated from the entire data set. The solid horizontal lines denote the median 

value in each period. For this system, if the outlier filter limits were defined by the 25
th
 and 

75
th
 quartiles calculated from the entire dataset, Figure 2 illustrates how in 2009 the analysis 

would exclude a significant proportion of the PR data at the high end of the spectrum. This 

would result in an underestimation of the PR for that year and would ultimately lead to an 

underestimation of the calculated degradation rate.  

 

Figure 2: System 8 Kaneka ï Frequency distributions of 5 minute degradation rates. 

Light blue regions denotes the data that falls within the upper and lower 25% quartile 

range calculated on the full dataset between 2009 and 2016. 

4. Rolling Window Quantile Filter ï Rather than applying a tightly defined fixed outlier 

filter, this paper utilised a 12 month moving average of the upper and lower 20% 

quantiles. The limits are calculated from the calculated distributions of the PR/WCPR data 

after filters 1 to 3 have been applied.  

The combined effects of applying the filters in a stepwise process are presented in Figure 3 to 

Figure 8, as applied to system ó3 BP Solarô. 

 

3. PV Systems and Weather Data 

3.1. DKASC 

The PV system data for the location of Alice Springs was sourced from the Desert Knowledge 

Australia Solar Center (DKASC). The aim of the DKASC is to promote understanding and 

confidence in solar technologies by providing the industry with long term system level data. 

The DKASC currently measures, records and publishes PV performance data from 37 PV 

systems covering a variety of technologies, manufacturers and configurations. In addition, the 

DKASC also measures a number of weather variables of interest including, global and diffuse 

horizontal irradiance (ghi and dhi), ambient air temperature (Ta) and wind speed (WS). It is 

important to note that irradiance measurements recorded at the DKASC are measured using a 

Delta T SPN 1 Sunshine Pyranometer, which has a stated accuracy whereby 95% of readings 

will be within an interval of °8%°10 W/m
2
. 



 

 

Figure 3: Performance Ratio (PR) ï No filters applied 

 

Figure 4: Weather Corrected Performance Ratio (WCPR) ï No filters applied 

 

Figure 5: WCPR ï Stability filters applied 

 



 

 

Figure 6: WCPR ï Stability filters applied only POA > 600 W/m
2
 displayed 

 

Figure 7: WCPR ï Stability and POA irradiance filters applied 

 

Figure 8: WCPR ï All filters applied 


