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Abstract 

Solar energy is expected to play a significant role in future low emission electricity systems. 

Due to the daily cycle of solar energy flux, future electricity generation scenarios with a high 

penetration of solar photovoltaic (PV) capacity typically identify challenges with integrating 

relatively short daily periods of high PV generation, and hence benefit from energy storage. 

While dedicated energy storage devices such as batteries show great promise, it is also 

important to consider other types of demand side management that may allow more cost 

effective and efficient integration of solar power. In the Australian National Electricity 

Market (NEM), a significant proportion of houses currently have storage hot water systems 

attached to controllable circuits, which are supplied only during off-peak hours, at present 

mostly overnight. These hot water loads constitute a substantial shiftable load resource with 

the technology for centralised dispatch already in place. In an electricity system with a high 

level of PV capacity, it is intuitive that dispatch of these loads during sunlight hours may 

assist in the integration of this solar generation. This study aims to quantify the system-level 

value of shiftable off-peak hot water in future NEM scenarios with high PV penetrations. The 

PLEXOS® Integrated Energy Model is used to optimise dispatch of the hot water load to 

minimise total system operating cost. This is compared against the existing ‘night shifted’ 

load profile as well as a simulated uncontrolled profile for water heating. Optimal dispatch of 

shiftable hot water load is found to reduce overall system generation costs on average by 

5.8% per year, reduce generator ramping by 22% and reduce solar energy spill by around 37% 

relative to the uncontrolled simulation. 

1. Introduction

Given strengthening international climate action goals, there is growing interest and attention 

towards increasing penetrations of renewable energy into existing fossil fuel-based power 

systems as a key means to reduce greenhouse gas emissions. Due to the enormous solar 

resource potential, continual improvements in performance and recent large cost reductions, 

solar photovoltaic (PV) technology offers considerable potential to be a leading source of 

renewable energy into the future. However, in addition to the uncertainty challenge common 

between PV and other variable renewable energy (VRE) sources such as wind, the significant 

predictable diurnal variability of solar output presents specific integration challenges at high 

PV penetrations. 



 

A key solution is energy storage, to allow PV energy to be stored at the time of generation 

and then used when it is needed. While batteries are one potentially important form of energy 

storage, it is also important to consider loads that inherently incorporate energy storage. An 

important example in the Australian context is off peak hot water (OPHW), where a 

significant proportion of residential hot water storage systems are currently operated under a 

controlled load regime utilising ripple control systems, such that water is heated primarily 

during the night for use during the day. The potential for OPHW to be used to absorb high 

solar output during the day has been practically demonstrated to help manage voltage issues 

on a low voltage feeder with a high PV penetration in Australia (Swinson et al., 2015).  

At a more aggregated level there is also the potential for a different OPHW shifting regime to 

assist with system integration of both wind and PV generation, by helping to maintain the 

overall balance between increasingly variable supply and partially flexible demand. The study 

presented in this paper examines the value impact of OPHW in a high renewables Australian 

National Electricity Market (NEM) future scenario with particularly high PV penetration. A 

profile for existing OPHW load in the NEM is developed based on half-hourly demand data 

from off peak circuits for over 1200 houses from the Australian Smart Grid Smart City trial. 

This load is modelled as a shiftable resource at a half hourly resolution over a five year 

period, using the PLEXOS® Integrated Energy Model. This approach helps fill several key 

gaps in the literature, bringing together detailed end use data with a system level supply-

demand perspective across a substantial modelling time frame. Key results presented are the 

impact on overall system generation costs, effects on total generator cycling, and impacts on 

renewables spill as well as system emissions. 

The rest of the paper is structured as follows The next Section provides context for the 

research. Section 3 describes the NEM scenarios used, analysis of the shiftable load data and 

its representation in PLEXOS, other PLEXOS model settings, and additional data inputs into 

the modelling. Section 4 presents results and discussion, and Section 5 gives conclusions from 

the work. 

2. Context 

2.1. Wind and solar PV in Australia 

Variable renewable generation in Australia consists primarily of utility scale wind and behind 

the meter rooftop solar, estimated for 2015 at around a 5% energy contribution from wind 

(AEMO data accessed through NemSight®), and around 2.8% from solar (Johnston & Egan, 

2016). However, with the continuing fall in the costs of solar PV and recent construction of 

multiple utility scale plants in the NEM, there is the potential for the solar contribution to rise 

considerably into the future. Current federal level renewable energy targets in Australia aim to 

achieve at least 20% of electricity from renewables by 2020, and a number of Australian 

States have independently adopted more ambitious targets. This work thus aims to gain a 

better understanding of future energy scenarios where both the potential for much higher 

levels of VRE, and a relatively higher proportion of solar PV are realised. 

2.2. The renewables integration challenge and demand side management 

The potential to shift loads to better match generator output broadly falls under the definition 

of demand side management (DSM), which includes demand response (DR) to a signal as 

well as energy efficiency and conservation, distributed generation and distributed storage. The 



 

potential of various types of DSM, and particularly DR, for renewables integration has 

attracted strong research interest over the last decade (Hungerford et al., 2015). 

Key areas of research include DR for provision of reserves (Parvania & Fotuhi-Firuzabad, 

2010) and balancing and ancillary services (Ma et al., 2013). Several studies particularly 

focus on the ability of DR to mitigate the uncertainty due to wind forecasting error (Kowli & 

Meyn, 2011; Paterakis et al., 2015), using two-stage unit commitment models. While this area 

is an important potential value of DSM, the turnover of the ancillary services and reserve 

markets in Australia are very low compared with the wholesale energy market at present, and 

this aspect has not been considered in this work. 

Peak load reduction using DSM in high renewables systems has also attracted considerable 

research interest. For example, in (Papavasiliou & Oren, 2010) a coupling algorithm is 

developed to enable renewables to capture ‘capacity credit’ for a shiftable load. In (De Jonghe 

et al., 2014), DR based on price elastic load is used to reduce peak load, emissions and also 

renewables curtailment. A short time frame study also based on price elasticity (Ikeda et al., 

2012) also uses DR to reduce the number of operating units during the peak time. The price 

elasticity approach is common, and relies on very high level assumptions about demand 

reduction. 

2.3. Use of the PLEXOS® Integrated Energy Model 

A key aim of our study is to bring together detailed end use data with a large systems model. 

PLEXOS is well suited to this task as a highly flexible tool with inbuilt DSM features which 

has been used extensively for academic research on the NEM (Molyneaux et al., 2013; 

Wagner et al., 2014; Wilkie et al., 2015) as well as other electricity markets (Brouwer et al., 

2016; Lew et al., 2013), and particularly the Irish All Island SEM (Foley et al., 2013; 

O'Dwyer & Flynn, 2015). Despite its inbuilt DSM features, we are only aware of a few 

instances of shiftable loads being represented in PLEXOS. In (Foley et al., 2013) the 

‘purchaser’ class of PLEXOS is used to represent flexible electric vehicle (EV) loads, and the 

authors found centralised optimisation of the charging regime reduced system emissions, cost 

of charging, and the need for peaking generation. A recent study also uses PLEXOS to 

examine a range of types of DSM including both curtailment and shiftable loads (Brouwer et 

al., 2016). This paper investigates flexible industrial, commercial and residential loads in 

Western Europe. The cost and benefit of demand response is compared with alternatives of 

increased transmission and battery storage for integration of high levels of renewable energy, 

and DR is found to be the most beneficial to total system costs. 

3. Methodology  

3.1. Modelling the Australian National Electricity Market (NEM) 

The Australian National Electricity Market (NEM) consists of five interconnected regional 

markets for the states of Queensland, New South Wales, Victoria, South Australia and 

Tasmania. The NEM is a gross pool energy only spot market with 5-minute dispatch intervals, 

which are averaged within half hour trading periods to give half-hourly dispatch prices. The 

wholesale spot market is complemented by a set of frequency control ancillary services 

(FCAS) markets in addition to financial derivatives markets traded over the counter and 

through the Sydney Futures Exchange, which provide financial hedges for market players. 

Generator bidding behaviour in the NEM is strongly influenced by their derivative positions. 



 

Market power is also recognised to be a significant factor controlling market prices in the 

NEM, and is routinely monitored by the Australian Energy Regulator (AER) (AER, 2015). 

Due to the complexity of NEM operation, it is very challenging to accurately model generator 

bidding behaviour. As the focus of this research is to gain an indication of the potential 

underlying value of shiftable load in a high renewables scenario, the modelling simply uses 

least cost dispatch optimisation, without taking into account generator strategic behaviour or 

the impact of financial derivatives. In addition, to retain modelling simplicity, the NEM is 

treated as a single ‘copper plate’ area, although inclusion of transmission constraints 

represents a potential area for future work. 

3.2. Scenarios 

The modelling scenarios consist of a single generation portfolio combined with three different 

demand scenarios. 

3.2.1. Generation portfolio 

Solar PV and wind capacity are set such that each technology provides 20% of total NEM 

electricity served across a 5 year modelling period, disregarding spill, for a 40% total VRE 

contribution. Cogeneration, distillate and hydro capacity are based on existing NEM 

capacities. To base the remaining fossil fuel technologies on the existing NEM, the generation 

capacity for each technology is set so that energy served by technology remains in 

approximately the same proportion within these technologies as historical levels for the study 

period. Total generation capacity is kept the same for all modelling years, and adjusted so that 

the highest level of unserved energy seen across the entire period is approximately equal to 

the NEM reliability standard of 0.002% for the historical demand profile. 

3.2.2. Demand scenarios 

Three different demand scenarios are used: an historical, an optimised and an uncontrolled 

OPHW scenario. The historical load scenario directly uses the historical load from 2006-2010 

for the NEM, obtained from AEMO data using NemSight® from Creative Analytics. This 

period was chosen due to coincidence of available generation profiles for the renewable 

technologies. The optimised scenario involves subtraction of a developed hot water demand 

profile based on Smart Grid, Smart City (SGSC) trial (Ausgrid, 2014) data from the first 

profile, enabling the load to be added back as a shiftable object (described in Section 3.3.1). 

The uncontrolled scenario simulates an uncontrolled hot water usage profile (described in 

Section 3.3.2), which is scaled to be of equal size to the subtracted OPHW profile and added 

back to the demand curve to give a demand profile simulating overall demand if existing 

OPHW systems were supplied on-demand rather than using the remotely controlled ‘ripple’ 

circuit. 

3.3. Smart Grid Smart City trial data analysis 

Most of the data analysis for this section was performed using the software R (R Core Team, 

2015), complemented by Microsoft Excel®.  

3.3.1. Development of the off peak hot water demand profile 

This study takes advantage of publicly available data from Australian’s first commercial 

smart grid project, the Smart Grid, Smart City trial. This dataset includes half hourly general 

supply and controlled load data for over 3000 households, matched with detailed household 



 

survey data. The controlled load circuits are supplied either only during the night, or during 

all hours except for a set period during the evening peak, and it is expected that the greater 

majority of the load they supply is either off peak hot water or pool pump load. As pool pump 

ownership is included in the survey data, households with pool pumps could be excluded 

from the analysis to eliminate pool pump demand from the controlled load data. Houses with 

gas hot water systems were also excluded as well as all households with blank or zero entries 

for ‘number of occupants’, as these indicated either unoccupied residences or incomplete 

surveys. After these exclusions, around 1200 households remained, and the data for these was 

averaged for each time point to give a per-household profile. The monthly peak demand 

obtained in the analysis ranged from 1.9 to 2.4 kW per household, which corresponds well 

with expected hot water system demand, e.g. (Koon & Negnevitsky, 2013). Average daily 

demand ranges between 4.6 kWh per household in summer to 8.3 kWh in winter.  

Average profiles were created for different times of year, and the main difference observed 

across one year of data was a significant increase in the total energy consumption in winter 

months. Thus it was decided to adopt a single average usage shape for the year, with a scaling 

factor applied by month to capture seasonal variability. In addition, while the SGSC profile 

shows one very distinct late night peak, this reflects the specific area of the network (Ausgrid) 

where the SGSC trial was conducted. Based on two evident late-night shoulders in the NEM 

load data as well as other information on more staggered triggering patterns (e.g. as seen in 

(Swinson et al., 2015)), approximately one third of the peak occurring at 11:30 pm in the 

SGSC data was shifted 1.5 hours later. This profile was then scaled to the size of the NEM 

using the most recently available Australian Bureau of Statistics data for off peak hot water 

ownership data by state from 2008.  

3.3.2. Development of an uncontrolled hot water usage profile 

As the existing usage pattern for OPHW demand is the result of controlled load dispatch, in 

order to compare with an uncontrolled baseline it is desirable to investigate the shape of 

uncontrolled hot water demand. For this purpose, appliance level data from the SGSC trial 

specifically monitoring load from hot water systems was analysed. This dataset consists of 

non-synchronised cumulative meter readings by customer for approximately 90 different 

customers across just under one year, with intermittent periods of missing data for each 

customer. In order to enable analysis, each customer’s readings were organised into 

chronological order and each time stamp rounded to the nearest half hour using R software. 

Sequential cumulative readings were then subtracted so that each reading consists of the kWh 

of energy usage since the previous reading. In order to avoid high misleading readings where 

there were long periods between readings, all data points where the time interval from the 

previous reading was greater than 2 hours were then discarded. Furthermore, all negative 

readings were eliminated to exclude occasional large negative readings due to apparent meter 

resets, and all readings above a 5 kWh threshold were eliminated to remove a few remaining 

outlier readings most likely caused by meter error. 

In order to gain a sense of the average behaviour of each customer, individual customers’ 

usage profiles were aggregated across a 1-year time frame to obtain a single average daily 

usage profile for each customer. While many of the customers displayed a similar demand 

pattern to that of the OPHW load determined in section 3.2, 11 customers were able to be 

identified with an apparent uncontrolled profile, with hot water usage distributed throughout 

the day and generally displaying two peaks in the morning and evening. The data from these 

11 customers was then used to create aggregated average usage profiles for the year, including 



 

summer and winter weekday and weekend profiles. As these profiles did not show clear 

seasonal or day of week differences, a single annual average profile was derived, and used in 

the modelling to simulate the shape of uncontrolled hot water demand. This profile was then 

scaled based on the values used to simulate OPHW from Section 3.3, to create an overall 

profile with the same total energy consumption as the OPHW profile described in the 

previous section. 

3.4. PLEXOS® model 

3.4.1. Shiftable load representation 

Shiftable load is represented in PLEXOS® using its ‘purchaser’ class. Maximum load is set 

based on the maxima from the average usage shape developed in section 3.3.1 and the scaling 

factors applied using a ‘variable’ object. This approach was also used to define a maximum 

and minimum daily energy sum of equal value to ensure the desired amount of shiftable load 

is dispatched each day, split into two 12-hour blocks per day based on the energy distribution 

displayed in the uncontrolled usage profile described in section 3.3.2, as the flexibility around 

when the water is heated should be based on when it is used rather than the current dispatch 

pattern. 

3.4.2. PLEXOS model settings 

MOSEK is used as the mathematic solver, and similarly to (Baringa, 2016; Foley et al., 2013), 

rounded relaxation is also used, as this was found to deliver similar or better optimisation 

results to the full mixed integer solution with much shorter modelling times. A single 

rounding threshold of 0.5 was used, since tuning was found to extend modelling times with 

minimal effect on results. A scheduling interval of 30 minutes was combined with a step size 

of one day with an additional 1 day of look-ahead at an 8-hour resolution, across the 5-year 

modelling time period. 

3.4.3. Additional data inputs 

As cogeneration plant operation is seen to be largely dictated by heating requirements, 

historical cogeneration profiles were used, obtained through NemSight®. Generation profiles 

for new build wind and solar were obtained from ROAM hourly profiles provided as part of 

the AEMO 100% renewables study (AEMO, 2013), interpolated to give half hourly values. 

These profiles are based on the eastern part of Australia divided into 42 different polygons, 

with a per-MW profile given for each polygon based on hourly satellite data for PV, and 

weather forecasting system outputs for wind. For the present modelling a single NEM-wide 

profile was created by distributing generation capacity evenly between a selected subset of 

polygons, ensuring that even at very high VRE penetration the generation potential would not 

be exceeded in any of the polygons, to allow scalability. 

Operational characteristics for thermal plant including minimum operating levels, ramp rate 

restrictions, heat rates, fuel costs, variable operations and maintenance costs (VOM), fixed 

operations and maintenance costs (FOM), startup and shutdown costs, capital costs and 

emissions rates were obtained from ACIL Allen data used in the NTNDP 2015 (AEMO, 

2015). Averages by technology were used for most data inputs where there is variation 

between particular plant. This approach was also used to obtain average plant sizes. Cycling 

characteristics including ramping costs and start-up and shutdown times were obtained from 

(Lew et al., 2013). 
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3.4.4. Analysis of PLEXOS® results 

In addition to the PLEXOS® results interface, the R package ‘rplexos’ (Barrows et al., 2016) 

was found to be extremely efficient for retrieving results to .csv files which were then 

analysed using Matlab® and Microsoft Excel®. 

4. Results and Discussion 

4.1. Generation cost impact 

Annual total generation costs (TGC) for each of the existing control scenario and the 

PLEXOS optimised control scenario are compared with the uncontrolled hot water simulation 

for each year. The existing control scenario shows very poor performance for this generation 

portfolio, with higher costs in some years shown by the negative savings value seen in Figure 

1, and an average annual increase of $1.7 million. The optimised control regime provides a 

significant benefit in all modelling years and an average annual reduction of $152 million.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Annual TGC savings relative to the uncontrolled hot water demand scenario 

for the existing and optimised OPHW control regimes. 

These findings demonstrate the unsuitability of late night OPHW dispatch in a high VRE, 

high solar system. In the optimised regime, OPHW is generally activated during the day. The 

significant cost savings for the optimised pattern occur due to a slight decrease in wind spill 

and a shift from OCGT generation towards cheaper coal generation. 

4.2. Generator ramping 

A key predicted outcome of increasing VRE penetration is increased cycling requirements for 

conventional thermal plant. As the modelling includes ramping costs, the optimisation engine 

will minimise ramping behaviour where this is possible without increasing other generation 

costs. As seen in Figure 2, in all modelling years the existing control regime reduces total 

ramping of dispatchable plant relative to the uncontrolled simulation, and the optimised 

regime reduces this even further. On average ramping is reduced by 8% in the existing regime 

and 23% in the optimised regime. 
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Figure 2. Total annual dispatchable generator ramping by year for the different control 

regimes. 

4.3. Renewables spill and emissions 

Renewables spill shows a consistent trend with the existing control regime actually increasing 

spill relative to the uncontrolled simulation by an average of 18%, and the optimised regime 

reducing spill on average by 37%, as shown in Figure 3. This again demonstrates the 

unsuitability of the existing OPHW control regime for a high renewables, high solar case. 
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Figure 3. Annual renewables spill based on the three different control regimes. 

Both control regimes have a minimal impact on emissions, with the largest magnitude of 

change in any one year less than 0.1%. The existing control regime on average very slightly 

reduces emissions relative to the uncontrolled simulation (-0.01%) and the optimised control 

very slightly increases emissions (+0.01%). This is determined by shifts in the relative 

proportions of energy provided by the different generating technologies. In the existing 

control regime, the increase in renewables spill increases emissions, but this is 

counterbalanced by a small overall shift away from black coal towards less polluting CCGT 

generation. In the optimised regime, while renewables spill is significantly reduced, the 

overall flattening of the residual load profile also results in a significant shift from OCGT 

generation to more polluting black coal, resulting in an on-average increase in emissions. 



 

5. Conclusions 

Overall the findings of this study demonstrate significant system economic benefits of an 

optimised control regime for hot water load in a 40% VRE scenario with half of variable 

renewable energy provided by solar PV. Interestingly, the existing regime actually results in 

higher system operating costs in some years, and consistently increased renewables spill. 

While optimised control actually slightly increases overall emissions, it does offer significant 

system cost benefits, as well as a substantial reduction in renewables spill. Both control 

regimes consistently reduce dispatchable generator ramping requirements, and this effect is 

strongest in the optimised control case. By shifting load away from the peak times, both 

control regimes also offer similar benefits to generation capacity requirements. 

Key areas for future work include incorporating transmission constraints, considering other 

DSM resources, examining a wider range of renewables scenarios and also investigating the 

impact of changes in the fossil fuel plant mix. It is important to also note that this modelling 

takes a ‘perfect foresight’ approach, and thus it would be interesting to see the effect of 

modelling using imperfect forecasting followed by real-time recourse decisions. In addition, 

while the employment of an economic dispatch model here is useful for assessing underlying 

potential value, it is important to consider that the real world impact on electricity market 

outcomes is more difficult to predict as dispatch decisions are made based on generator 

bidding patterns, which are very challenging to model. 
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