

PATHWAYS TO FUELS AND ELECTRICITY USING CONCENTRATED SUNLIGHT

PETER G. LOUTZENHISER

SOLAR FUELS AND TECHNOLOGY LABORATORY

GEORGE W. WOODRUFF SCHOOL OF

MECHANICAL ENGINEERING

CREATING THE NEXT*

OUTLINE

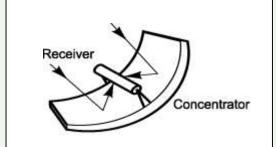
- Background and motivation
- Solar thermochemical concept
- Syngas production via two-step solar thermochemical cycles
- Hybrid processes
- Solar thermochemical energy storage
- Summary and outlook

MOTIVATION AND BACKGROUND

Annual solar irradiation

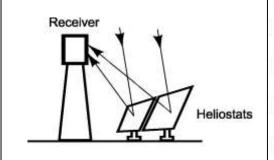
Dilute: Maximum directnormal solar irradiance of 1 kW·m⁻²

Intermittent: Solar energy can only be harvested when the sun is shining

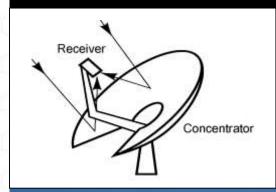

Unequally distributed:

Optimal areas for harvesting solar energy are near the equator away from population centers

CONCENTRATION SOLAR IRRADIATION

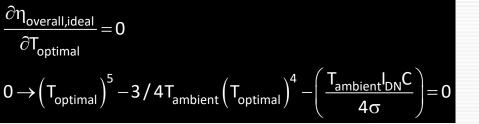


Trough Solar concentrations of < 100 suns

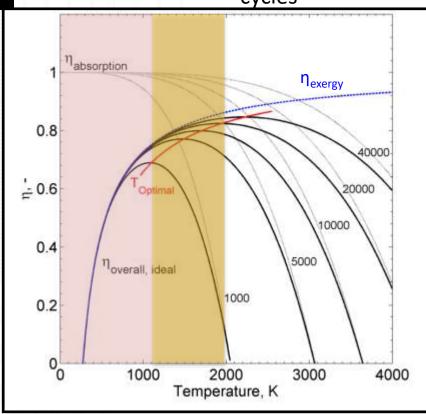


Tower Solar concentrations of 500 – 2500 suns with secondary

Dish Solar concentrations of 5000 – 10,000 suns

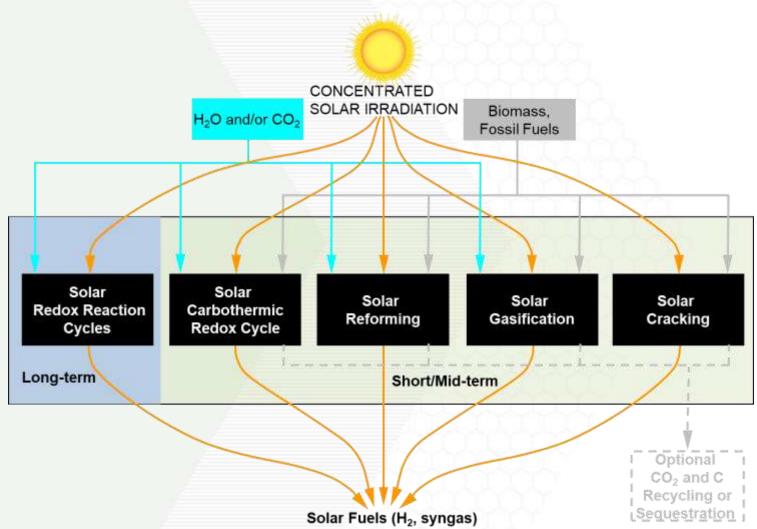


MAXIMUM WORK POTENTIAL EXTRACTION



$$\eta_{\text{overall,ideal}} = \eta_{\text{absorption}} \eta_{\text{Exergy}} = \underbrace{ \left(1 - \frac{\sigma T^4}{I_{DN}C} \right)}_{\frac{\dot{Q}_{\text{solar}} - \dot{Q}_{\text{re-radiation}}}{Q_{\text{solar}}}} \cdot \underbrace{ \left(1 - \frac{T_{\text{ambient}}}{T} \right)}_{\text{theoretical work potential from heat (exergy)}}$$

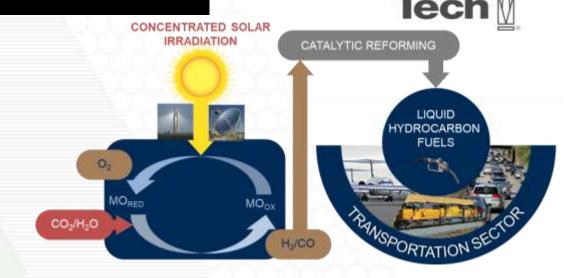
$$\eta_{\text{overall,ideal}} = 0 \longrightarrow T_{\text{stagnation}} = \left(\frac{I_{DN}C}{\sigma}\right)^{0.25}$$



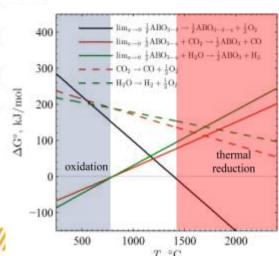
С	1000 suns	5000 suns	10000 suns
$T_{stagnation}$	2049 K	3064 K	3644 K
T _{optimum}	1106 K	1507 K	1724 K

OTHER SOLAR THERMOCHEMICAL PATHWAYS TO FUELS

SOLAR THERMOCHEMICAL CONCEPT


Ivanpah Solar Electric Generating System Ivanpah, California

- Contain 173,500 heliostat mirrors
- Gross capacity of 392 MW_{th}.
- Solar fuels development looks to place a solar thermochemical reactor in the focal point

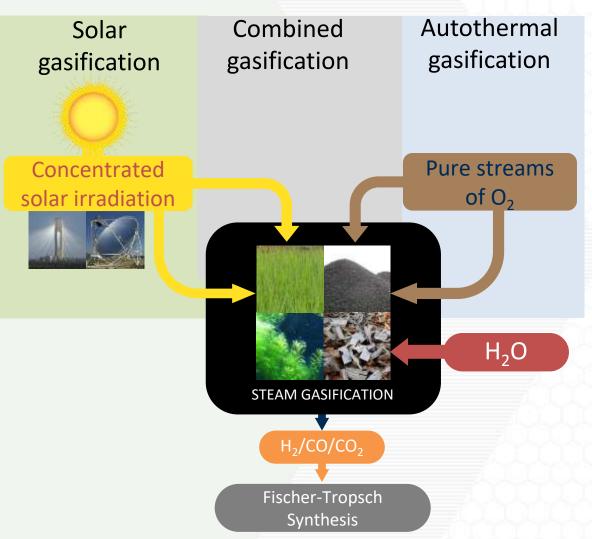

SYNGAS PRODUCTION VIA TWO-STEP SOLAR THERMOCHEMICAL CYCLES BASED ON REDOX-ACTIVE MATERIALS

- Chemically reduce mixtures of H₂O and CO₂ to synthesis gas using concentrated solar irradiation for conversion to liquid fuels (reversing the combustion process with solar energy)
- Solar fuels decouple the intermittency and location and allow for storage and transportation
- Replaces fossil fuels without major changes in transportation/power generation infrastructure
- Creates carbon-neutral fuels with CO₂ captured from the air
- Alternative to CO₂ sequestration for direct capture from flue gases; CO₂ never introduced into atmosphere

 $MO_{OX} \rightarrow MO_{RED} + \frac{1}{2}O_{2}$ endothermic, solar-driven reaction $MO_{RED} + H_{2}O/CO_{2} \rightarrow MO_{OX} + H_{2}/CO$ exothermic reaction $H_{2}O/CO_{2} \rightarrow H_{2}/CO + \frac{1}{2}O_{2}$ net reaction

Redox-active pairs: ZnO/Zn, Fe_3O_4/FeO_1 , Redox-active MIECs: $ABO_{3-\delta}$ (tunable with cation substitution), $CeO_{2-\delta}$ Ideal performance curve for thermodynamics

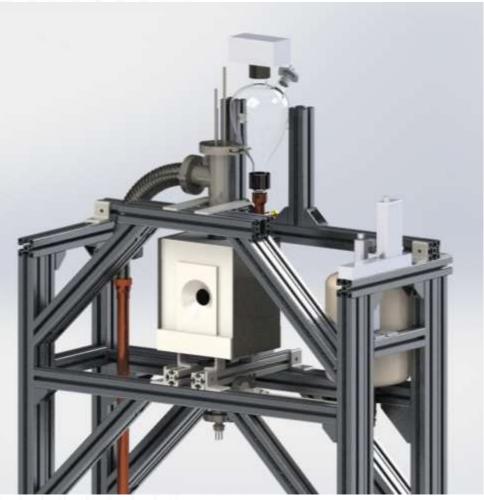
Georgia


SOLAR CHEMICAL HYBRID CYCLES

- Hybrid cycles combine different elements of solar processes/cycles to
 - 1. Lower the required solar reactor temperature
 - 2. Continuously produce syngas for further processing
- Discuss two-hybrid processes:
 - 1. Hybrid solar/autothermal gasification for continuous syngas production
 - 2. Solar thermoelectrolytics cycle for H₂ production

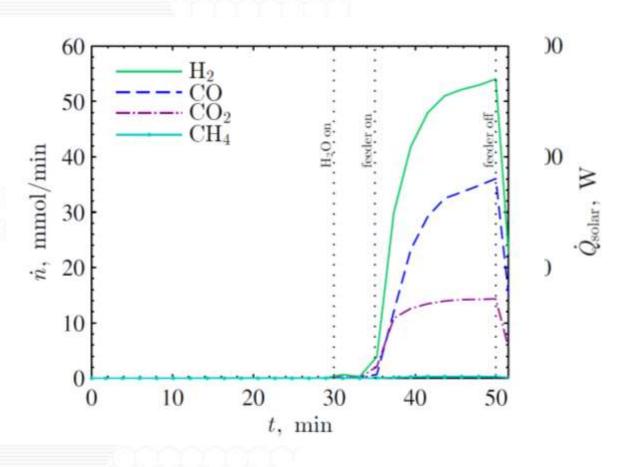
HYBRID SOLAR/AUTOTHERMAL GASIFICATION SCHEME

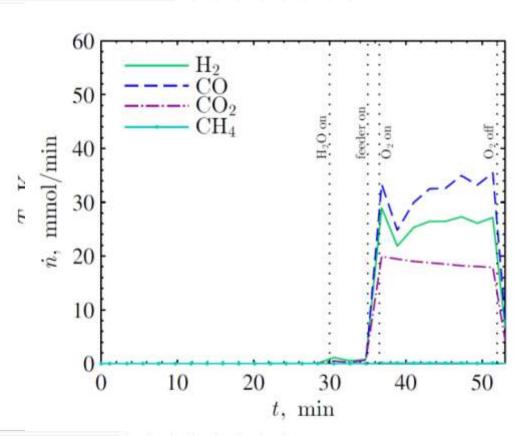
Solar gasification: Operation for periods of high direct-normal solar irradiation using only solar input to drive the syngas production process.

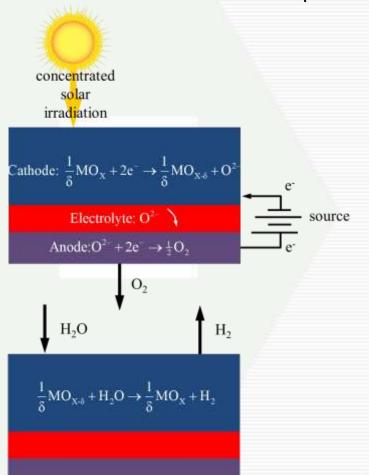

Combined gasification: Operation during periods of insufficient direct-normal solar irradiation where O_2 is injected to provide additional process heat to drive the reaction by combusting a portion of the coal feedstock.

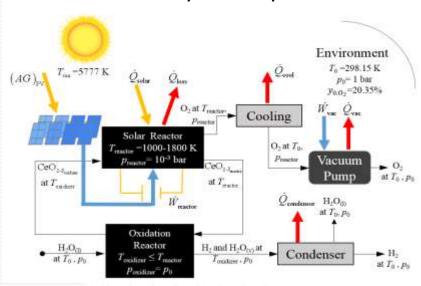
Autothermal gasification: Nighttime operation with insufficient where O_2 is injected to provide process heat to drive the reaction plus stored heat via thermal capacitance during the day.

PROTOTYPE OF HYBRID GASIFIER








SOLAR THERMOELECTROLYTIC CYCLE

Schematic of the concept

Thermodynamic system

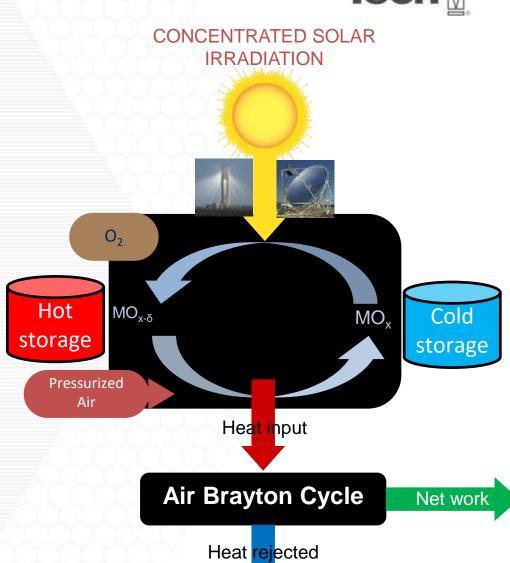
Optimal performance with CeO_{2-δ}

- ❖ 1000 suns
- Reactor temperature 1424 K

$$\eta_{\text{solar-to-fuel}} = 31.1\%$$

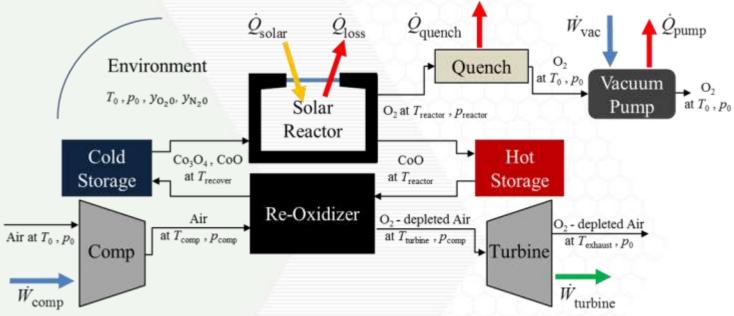
$$\bullet$$
 $\varepsilon_{\text{cycle}} = 27.5\%$

SOLAR THERMOCHEMICAL ENERGY STORAGE



CREATING THE NEXT

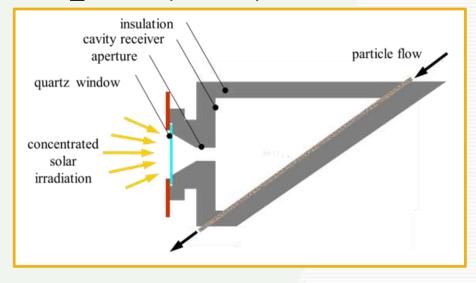
storage via a two-step solar thermochemical cycle for integration in an Air Brayton cycle based off of redox-active materials:


$$MO_{x-\delta} + \frac{\delta}{2}O_2 \square MO_x + \Delta h$$

- Enables heat storage in both a chemical and sensible form
- The added chemical storage increases the energy densities of the material to better account for intermittency of sunlight

THERMODYNAMIC INVESTIGATION OF CYCLE WITH Co_3O_4 / CoO

A flow diagram of the Air-Standard Brayton cycle with an integrated two-step solar thermochemical heat storage cycle based on Co₃O₄/CoO redox reactions is depicted with relevant heat and work flows into and out of the system

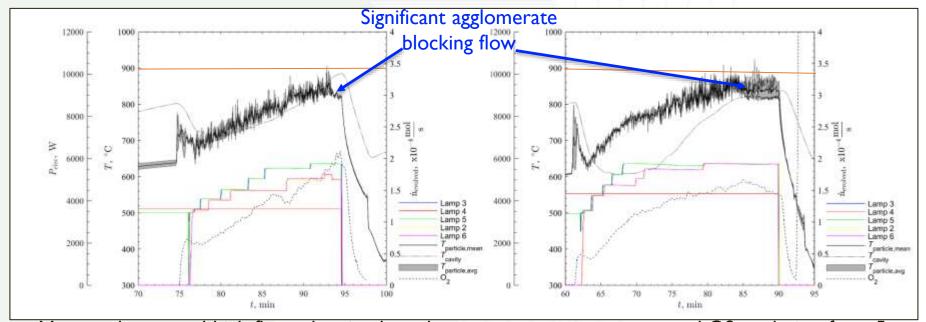

 $\eta_{\text{cycle, ideal}} \rightarrow 0.44$ Cycle worth pursuing

Promote η_{cycle} , reduce solar reactor losses

SOLAR THERMOCHEMICAL REACTOR CONCEPT: SOLAR RECEIVER/REDUCER/REACTOR (SR3)

<u>Solar Thermochemical INclined Granular</u> flow <u>Reactor</u> (STINGR)

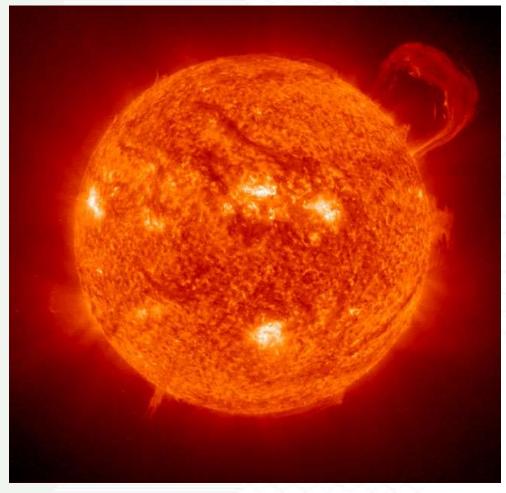
- ☐ Efficient thermal reduction within solar thermochemical reactor:
 - Direct solar irradiation
 - Continuous on-sun operation
 - Matched incident solar power to rate of sensible and chemical energy storage
- Reactor cavity designed to mitigate radiative losses through window and promote direct irradiation along inclined plane
- Reactor evacuated to promote low partial O₂, sealed with quartz window to introduce concentrated solar irradiation
- Combination of frictional and collisional effects of particles produce thin granular flow, increased particle residence times



Fully fabricated SR3 Water-cooled SR3 mounted in cavity made of front of the HFSS copper diaphragm alumina with quartz window with hoppers

EXPERIMENTAL RESULTS

- For all parameter combinations investigated, severe particle agglomeration at T > 900 °C, phase impurities in particles limited reduction.
- Agglomerate formation observed in two experiments where $d_{\rm p}$ < 100 μm and 140 μm < $d_{\rm p}$ < 350 μm


Measured temporal high flux solar simulator lamp powers, temperatures, and O2 evolution from 5 kW_{th} reactor experimentation using Coorstek particles with diameters less than 100 μ m (left) and diameters between 140 and 350 μ m (right)

SUMMARY AND CONCLUSIONS

- Solar thermochemistry is an innovative pathway that employs concentrated sunlight as process heat to drive chemical processes to produce fuels and electricity
- Long-term solar thermochemical cycles for producing syngas still face challenges, including relatively high temperatures and storage of H₂ and/or CO
- Hybrid processes and electricity production via solar thermochemical storage can be used in some measure to address these concerns to provide long-term storage
- ❖ Further efforts need to be made for long-term storage and reducing the solar thermochemical reactor temperatures to match large scale solar concentrating facilities
- A multidisciplinary approach is required to address ongoing challenges related materials and reactor designs

- ☐ Funding: U.S. Department of Energy SunShot initiative under Award No. DE-FOA-0000805-1541 and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903
- ☐ ETH Zurich: Professor Aldo Steinfeld
- ☐ Georgia Tech: Evan Bush, Robert Gill, Alex Muroyama, Garrett Schieber, Andrew Schrader, and Sheldon Jeter
- ☐ SNL: Andrea Ambrosini, Sean Babiniec, Cliff Ho, and James Miller
- ☐ ASU: Ellen Stechel and Nathan Johnson
- KSU: Haney Al-Ansary