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Light- and Elevated Temperature Induced Degradation (LeTID) 
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• There have been over 200 conference and journal publications worldwide

• LeTID is now a very well known in both academia and industry
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The Past – Beginnings of LeTID

• First identified in 2012 on mc-PERC solar cells by Ramspeck et al.

• Average degradation in efficiency of up to 10%rel on untreated cells and as much as 16%rel in some studies

[1] Ramspeck et al., 27th EUPVSEC, (2012), 861-865.
12

Reference Type Rel. Deg Condition

Sio et al. Cell 4.3% 65 °C, 1sun

Chan et al. Cell 12.7% 70 °C, 0.46 kW/m2

Luka et al. Cell 10% 75 °C, 1sun

Ramspeck et al. Cell 6% 75 °C, 0.4 kW/m2

Petter et al. Cell 16% 75 °C, 1sun

Deniz et al. Cell 4.4% 75 °C, JSC

Krauss et al. Cell 11.2% 80 °C, 0.8 kW/m2

Fertig et al. Module 11% 85 °C, MPP, 1 kW/m2

Kersten et al. Module 11% 85 °C, MPP

Nakayashiki et al. Module 7.5% Outdoor

Kersten et al. Module 10% Outdoor
Ramspeck et al., 27th EUPVSEC, 

(2012), 861-865.



The Past – Early Observations

13

• In 2015, Kersten et al. showed that the degradation was accelerated at higher T, thus calling it LeTID

• Later in 2017, Kwapil et al. demonstrated a dependence of the degradation reaction on Δn. Adding 
illumination increases the reaction rate.

• In 2017, Chan et al. observed that degradation also occurs during dark annealing

[1] [3][2]

Kersten et al., Sol. Energy Mater. 
Sol. Cells. 142 (2015) 83–86

Kwapil et al., Sol. Energy Mater. Sol. 
Cells, 173 (2017), 80–84

Chan et al., Sol. RRL. 1 (2017) 
1600028.



The Past –A Discovery of LeTID in Czochralski

• This provided a method of testing p-type Cz wafers without activating B-O defects

14

• As part of my PhD, we showed that LeTID also manifests itself in Cz materials

Chen et al., Sol. Energy Mater. Sol. 
Cells. 172 (2017) 293–300.



The Past –A Universal Defect in Silicon

15

Cast-mono
Ga-doped [3]

Silicon heterojunction (SHJ)
N-type-Si

[1]  Sperber et al., AIP Conf. Proc., 2019: p. 140011.
[2] Ramspeck et al., 27th EUPVSEC, (2012), 861-865.

FZ-Si [2]

[3] Duong et al., Sol. Energy Mater. Sol. Cells. 
188 (2018) 27–36.

Perovskites?? [3]
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The Past – Evaluating the Root Cause – Metal Impurities

• In 2016, Bredemeier et al. proposed that metallic impurities (M) are the root cause of LeTID.

[1] Bredemeier et al., Energy Procedia. 92 (2016) 773–778.
17
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1. Before firing: metallic impurities reside in a recombination inactive precipitated state (MP).

2. Firing (T > 600 °C): precipitates dissolve into interstitials (Mi).

3. Cooldown: Mi bond with a homogeneously distributed impurity to form a Mi – X complex.

4. Illuminated annealing: The complex reconfigures itself into a Mi – X* complex then dissociates into Mi



The Past – Evaluating the Root Cause – Metal Impurities

• In 2017, Bredemeier et al. suggested Co and Ni as a possible metal impurity 

• It was suggested that diffusion of the metals towards the surface could explain regeneration.

[1] Bredemeier et al., Sol. RRL. 2 (2018) 1700159.
[2] Deniz et al., Sol. RRL. 2 (2018) 1800170. 18

• Deniz et al. (2018), found Ni precipitation using TEM and energy dispersive x-ray (EDX) measurements.
• TIDLS by UNSW, MIT – defect recombination properties (k-value) close to Tii

++/+, Moi
0/+ or Ws

0/+.

Stacking fault

[2][1]

[3] Jensen et al., 44th IEEE PVSC, 
2017: pp. 3300–3303.



The Present – Hydrogen-Induced Degradation

• There are now many studies suggesting that hydrogen is responsible for LeTID.

[1] Schmidt et al., IEEE J. Photovoltaics. 9 (2019) 1497–1503.
19

• Recently, Schmidt et al. demonstrated for the first time, a direct correlation between [H] and LeTID

• In experiments, we observe different amounts of LeTID in different materials. 

• Is something inherent to the wafer also involved – Could it be a H-X complex?

[1]



The Present – H-X Complexes and Deep Level Transient Spectroscopy

• Hydrogen can form complexes with almost everything

[1] Chunlan et al., GADEST Conference 2019.
20

• Ag-HX (Graff 2000…)

• Au-H (Deixier 1998…)

• B-H (Sah 1983…)

• C-H (Anderson 2002…)

• C-O-H (Vaqueiro-Contreras 2017)

• Co-HX (Scheffler 2013…)

• Cr-H (Sadoh 1994…)

• Cu-H (Yarykin 2013…)

• Fe-H (Szwacki 2007…)

• Ni-HX (Shiraishi 1999…)

• P-H (Seager 1990…)

• Pd-H (Jones 1999…)

• Pt-HX (Hohne 1994…)

• Si-V-HX & Si-V-O-HX (Bonde 1999)

• Ti-HX (Scheffler 2015…)

• VX-HY (Graff 2000…) 

• Va-HX (Sadoh 1992…)

• And many more…..

N-H1

CH1AB

COH(-/0)

Fe-H

[1]

• Recent DLTS studies have hypothesised that Fe-H or C-H complexes 
may be defect behind LeTID.  Further measurements are needed to 
confirm this.

• DLTS is a good method for identifying recombination active traps
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The Present –A Hydrogen-X Defect Model
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The Present –A Hydrogen-X Defect Model
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• During firing (peak) – H diffuses into Si as interstitials

• At high temperatures, the Si conductivity is intrinsic → H is largely in the H+ state

• During cooling (quenching) – H forms B-H pairs in the bulk and passivates defects. 

The Present –A Hydrogen-X Defect Model
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• During firing (peak) – H diffuses into Si as interstitials

• At high temperatures, the Si conductivity is intrinsic → H is largely in the H+ state

• During cooling (quenching) – H forms B-H pairs in the bulk and passivates defects. 

• It also pre-forms LeTID, however, a majority of H is frozen in metastable dimer states (H2A/B)

The Present –A Hydrogen-X Defect Model
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The Present –A Hydrogen-X Defect Model

[1] Fung et al., AIP Conf. Proc., 2018: p. 130004.
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• During annealing or light soaking – H2A dimers 

dissociate and contribute to B-H and LeTID

• All of these bonds are metastable and constantly 
breaking and forming e.g. H+ + B-H → H2B/C + B- + 2h+

H-

H0

H+

H0H+

HN HSi
Peak

interstitial H

[1]



[1] Fung et al., AIP Conf. Proc., 2018: p. 130004.
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The Present –A Hydrogen-X Defect Model

• LeTID recovers when the bulk is depleted of metastable 
dimers, bound states and H interstitials

• Net motion of H is towards the 
surface and out of silicon.

• With long-duration annealing, H effuses out of wafer 
or transforms into a stable H2C dimer state.
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The Present – Mitigation of LeTID – Process Modification

• There are many ways of reducing the hydrogen content within the silicon wafers to reduce LeTID

29

Chan et al., IEEE J. Photovoltaics. 6 
(2016) 1473–1479. 

• Reducing peak firing → Less H in-diffusion

R. Eberle et al., Energy Procedia, 
(2017) pp. 712–717.

or Slower-cooling →More H effusion

Schmidt et al., IEEE J. Photovoltaics. 
9 (2019) 1497–1503

• Thinner wafers have demonstrated lower LeTID → Faster defect effusion



The Present – Mitigation of LeTID – Process Modification

• We can also reduce the hydrogen content within the SiNX:H films. 

• Reducing the thickness of SiNX:H → lower Si-H and N-H bond density → lower [H] released during firing

• Deposition of ALD AlOX under the SiNX:H  as barrier for hydrogen in-diffusion

[1] Varshney et al., IEEE J. Photovoltaics. 9 (2019) 601–607. 
[2] Varshney et al.,IEEE J. Photovoltaics, 2019 (in press) 30



The Present – Mitigation of LeTID – Process Modification

• Tuning the SiNX:H refractive index to release less hydrogen during firing

• At low RI < 1.9, SiNX:H films have high atomic density → reduces H diffusivity

[1] Bredemeier et al., Phys. Status Solidi – Rapid Res. Lett. 13 (2019) 1900201.
[2] Wilking et al., J. Appl. Phys. 114 (2013) 194512 31

• Hydrogen is important as it allows for the passivation of bulk defects (e.g. B-O in p-type)

• Lower [H] causes B-O regeneration to become slower → LID mitigation techniques become less effective.

Standard RI (2.1)

[1]

1. Light based treatments
2. Current Injection
3. Biased annealing

• Commercial LeTID 
mitigation usually involves 
post-cell treatments

[2]



The Present –An Example of Commercial ANTI-LeTID Solar Cells and Modules

• Risen solar (Jäger Series) combine many techniques

1. Low temperature firing – reduces hydrogen in-diffusion

2. Current-injection post-cell processing

3. ALD AlOx:H passivation on both sides – hydrogen lean blocking layer

4. SiO2 layer on both sides – hydrogen blocking layer

Risen Solar, Jager series Technical White Paper, 2018.
32

SiO2/AlOx/SiNx/Al

SiO2/AlOx/SiNx

p-type Si



What Lies Ahead –Will LeTID Remain a Problem for Commercial PV? 

LeTID is both a material-inherent and process-induced defect

[1] Fertig et al., Sol. Energy Mater. Sol. Cells. 200 (2019) 109968.
33

• Wafer quality is constantly improving with some wafers that are already LeTID free.

• Choosing better wafer sources + applying mitigation treatments will solve LeTID in both mc-Si and Cz-Si

[1]



What Lies Ahead – Hydrogen-Induced Surface Degradation

• As LeTID recovers, hydrogen diffuses out towards the surfaces.

• Too much H at the interface can lead to the formation of 
hydrogen-induced defects → surface degradation (increased 
J0s).

• On PERC cells, this long-term degradation can cause up to a 
10% absolute drop in efficiency due to an decrease in FF [1].

[1]  Herguth et al., IEEE J. Photovoltaics. (2018) 1–12.
34

[1]



Summary

• LeTID is a complicated but well understood 
problem.

• There are many mitigation techniques for 
commercial PERC solar cell

• Beyond LeTID, we need to start assessing the 
impact of hydrogen-induced surface degradation 
and finding solutions.

• I hope that you have learnt something from my 
talk!

35
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Thank you for your attention. Daniel.chen@unsw.edu.au

mailto:Daniel.chen@unsw.edu.au

