

Light- and Elevated Temperature-Induced Degradation (LeTID): the Past, the Present and What Lies Ahead

School of Photovoltaic and Renewable Energy Engineering

2019 Asia-Pacific Solar Research Conference, Canberra, Australia – 2nd Dec 2019

Daniel Chen

Faculty of Engineering

Moonyong Kim, Utkarshaa Varshney, Chandany Sen, Shaoyang Liu, Yuchao Zhang, Phillip Hamer, CheeMun Chong, Alison Ciesla, Catherine Chan, Ran Chen, Malcolm Abbott, Brett Hallam

Light- and Elevated Temperature Induced Degradation (LeTID)

• LeTID is now a very well known in both academia and industry

• There have been over 200 conference and journal publications worldwide

LeTID

Presentation Outline

- 1. A brief history of LeTID
- 2. Evaluating the Root Cause of LeTID
- 3. Our proposed LeTID model
- 4. Mitigation Strategies for LeTID
 Is LeTID going to be a problem for the industry?
 What happens after LeTID?

The Past – Beginnings of LeTID

Reference	Туре	Rel. Deg	Condition
Sio <i>et al.</i>	Cell	4.3%	65 °C, 1sun
Chan <i>et al.</i>	Cell	12.7%	70 °C, 0.46 kW/m²
Luka <i>et al.</i>	Cell	10%	75 °C, 1sun
Ramspeck et al.	Cell	6%	75 °C, 0.4 kW/m²
Petter <i>et al.</i>	Cell	16%	75 °C, 1sun
Deniz <i>et al.</i>	Cell	4.4%	75 °C, J _{SC}
Krauss <i>et al.</i>	Cell	11.2%	80 °C, 0.8 kW/m ²
Fertig <i>et al.</i>	Module	11%	85 °C, MPP, 1 kW/m²
Kersten <i>et al.</i>	Module	11%	85 °C, MPP
Nakayashiki <i>et al.</i>	Module	7.5%	Outdoor
Kersten <i>et al.</i>	Module	10%	Outdoor

- First identified in 2012 on mc-PERC solar cells by Ramspeck et al.
- Average degradation in efficiency of up to 10%_{rel} on **untreated cells** and as much as 16%_{rel} in some studies

The Past – Early Observations

• In 2015, Kersten et al. showed that the degradation was accelerated at higher T, thus calling it LeTID

- Later in 2017, Kwapil *et al.* demonstrated a dependence of the degradation reaction on Δn. Adding illumination increases the reaction rate.
- In 2017, Chan et al. observed that degradation also occurs during dark annealing

The Past – A Discovery of LeTID in Czochralski

• This provided a method of testing p-type Cz wafers without activating B-O defects

• As part of my PhD, we showed that LeTID also manifests itself in Cz materials

The Past – A Universal Defect in Silicon

[1] Sperber *et al.*, AIP Conf. Proc., 2019: p. 140011.
[2] Ramspeck et al., 27th EUPVSEC, (2012), 861-865.

[3] Duong *et al.*, Sol. Energy Mater. Sol. Cells. 188 (2018) 27–36.

Presentation Outline

- 1. A brief history of LeTID
- 2. Evaluating the Root Cause of LeTID
- 3. Our proposed LeTID model
- 4. Mitigation Strategies for LeTIDIs LeTID going to be a problem for the industry?What happens after LeTID?

The Past – Evaluating the Root Cause – Metal Impurities

• In 2016, Bredemeier et al. proposed that metallic impurities (M) are the root cause of LeTID.

- **1.** Before firing: metallic impurities reside in a recombination inactive precipitated state (M_P) .
- **2.** Firing (T > 600 °C): precipitates dissolve into interstitials (M_i) .
- **3.** Cooldown: M_i bond with a homogeneously distributed impurity to form a $M_i X$ complex.
- **4.** Illuminated annealing: The complex reconfigures itself into a $M_i X^*$ complex then dissociates into M_i

The Past – Evaluating the Root Cause – Metal Impurities

- In 2017, Bredemeier et al. suggested Co and Ni as a possible metal impurity
- It was suggested that diffusion of the metals towards the surface could explain regeneration.

- Deniz et al. (2018), found Ni precipitation using TEM and energy dispersive x-ray (EDX) measurements.
- TIDLS by UNSW, MIT defect recombination properties (k-value) close to $Ti_i^{++/+}$, $Mo_i^{o/+}$ or $W_s^{o/+}$.

[1] Bredemeier *et al.*, Sol. RRL. 2 (2018) 1700159.
[2] Deniz *et al.*, Sol. RRL. 2 (2018) 1800170.

[3] Jensen *et al.*, 44th IEEE PVSC, 2017: pp. 3300–3303.

The Present – Hydrogen-Induced Degradation

• There are now many studies suggesting that hydrogen is responsible for LeTID.

- Recently, Schmidt et al. demonstrated for the first time, a direct correlation between [H] and LeTID
- In experiments, we observe different amounts of LeTID in different materials.
 - Is something inherent to the wafer also involved Could it be a H-X complex?

The Present – H-X Complexes and Deep Level Transient Spectroscopy

Temperature (K)

- Hydrogen can form complexes with almost everything
- Ag-H_X (Graff 2000...)
- Au-H (Deixier 1998...)
- **B-H** (Sah 1983...)
- **C-H** (Anderson 2002...)
- C-O-H (Vaqueiro-Contreras 2017)
- **Co-H**_X (Scheffler 2013...)
- **Cr-H** (Sadoh 1994...)
- Cu-H (Yarykin 2013...)
- Fe-H (Szwacki 2007...)
- Ni-H_x (Shiraishi 1999...)
- **P-H** (Seager 1990...)
- **Pd-H** (Jones 1999...)
- **Pt-H**_X (Hohne 1994...)
- Si-V-H_X & Si-V-O-H_X (Bonde 1999)
- **Ti-H_X** (Scheffler 2015...)
- V_X-H_Y (Graff 2000...)
- **Va-H**_X (Sadoh 1992...)
- And many more.....

DLTS is a good method for identifying recombination active traps

• Recent DLTS studies have hypothesised that **Fe-H** or **C-H** complexes may be defect behind LeTID. Further measurements are needed to confirm this.

100

300

200

T (K)

Presentation Outline

- 1. A brief history of LeTID LeTID
- 2. Evaluating the Root Cause of LeTID
- 3. Our proposed LeTID model
- 4. Mitigation Strategies for LeTIDIs LeTID going to be a problem for the industry?What happens after LeTID?

The Present – A Hydrogen-X Defect Model

• **During firing (peak)** – H diffuses into Si as interstitials

The Present – A Hydrogen-X Defect Model

- During firing (peak) H diffuses into Si as interstitials
- At high temperatures, the Si conductivity is intrinsic \rightarrow H is largely in the H⁺ state

• **During cooling (quenching)** – H forms B-H pairs in the bulk and passivates defects.

- At high temperatures, the Si conductivity is intrinsic \rightarrow H is largely in the H⁺ state
- During cooling (quenching) H forms B-H pairs in the bulk and passivates defects.
- It also pre-forms LeTID, however, a majority of H is frozen in metastable dimer states ($H_{2A/B}$)

- During annealing or light soaking H_{2A} dimers dissociate and contribute to B-H and LeTID
- All of these bonds are metastable and constantly breaking and forming e.g. H⁺ + B-H → H_{2B/C} + B⁻ + 2h⁺

The Present – A Hydrogen-X Defect Model

Si H

H0

N

- Net motion of H is towards the surface and out of silicon.
- With long-duration annealing, H effuses out of wafer or transforms into a stable H_{2C} dimer state.
- LeTID recovers when the bulk is depleted of metastable dimers, bound states and H interstitials

[1] Fung *et al.*, AIP Conf. Proc., 2018: p. 130004.

Presentation Outline

- 1. A brief history of LeTID
- 2. Evaluating the Root Cause of LeTID
- 3. Our proposed LeTID model
- 4. Mitigation Strategies for LeTID
 Is LeTID going to be a problem for the industry?
 What happens after LeTID?

The Present – Mitigation of LeTID – Process Modification

• There are many ways of reducing the hydrogen content within the silicon wafers to reduce LeTID

- Reducing peak firing \rightarrow Less H in-diffusion or Slower-cooling \rightarrow More H effusion
- Thinner wafers have demonstrated lower LeTID ightarrow Faster defect effusion

The Present – Mitigation of LeTID – Process Modification

- We can also reduce the hydrogen content within the SiN_x:H films.
- Reducing the thickness of SiN_X:H \rightarrow lower Si-H and N-H bond density \rightarrow lower [H] released during firing
- Deposition of <u>ALD</u> AlO_X under the SiN_X:H as barrier for hydrogen in-diffusion

[1] Varshney *et al.*, IEEE J. Photovoltaics. 9 (2019) 601–607.
[2] Varshney *et al.*, *IEEE J. Photovoltaics*, 2019 (in press)

The Present – Mitigation of LeTID – Process Modification

- Tuning the SiN_x:H refractive index to release less hydrogen during firing
- At low RI < 1.9, SiN_X:H films have high atomic density \rightarrow reduces H diffusivity
- Hydrogen is important as it allows for the passivation of bulk defects (e.g. B-O in p-type)
- Lower [H] causes B-O regeneration to become slower → LID mitigation techniques become less effective.

- Commercial LeTID
 mitigation usually involves
 post-cell treatments
- 1. Light based treatments
- 2. Current Injection
- 3. Biased annealing

31

[1] Bredemeier *et al.*, Phys. Status Solidi – Rapid Res. Lett. 13 (2019) 1900201.
[2] Wilking et al., J. Appl. Phys. 114 (2013) 194512

The Present – An Example of Commercial ANTI-LeTID Solar Cells and Modules

- Risen solar (Jäger Series) combine many techniques
- 1. Low temperature firing reduces hydrogen in-diffusion
- 2. Current-injection post-cell processing
- 3. ALD AIO_x : H passivation on both sides hydrogen lean blocking layer
- 4. SiO₂ layer on both sides hydrogen blocking layer

What Lies Ahead – Will LeTID Remain a Problem for Commercial PV?

LeTID is both a material-inherent and process-induced defect

- Wafer quality is constantly improving with some wafers that are already LeTID free.
- Choosing better wafer sources + applying mitigation treatments will solve LeTID in both mc-Si and Cz-Si

What Lies Ahead – Hydrogen-Induced Surface Degradation

- As LeTID recovers, hydrogen diffuses out towards the surfaces.
- Too much H at the interface can lead to the formation of hydrogen-induced defects → surface degradation (increased J_{0s}).
- On PERC cells, this long-term degradation can cause up to a 10% absolute drop in efficiency due to an decrease in FF [1].

Summary

- LeTID is a complicated but well understood problem.
- There are many mitigation techniques for commercial PERC solar cell
- Beyond LeTID, we need to start assessing the impact of hydrogen-induced surface degradation and finding solutions.
- I hope that you have learnt something from my talk!

Thank you for your attention. <u>Daniel.chen@unsw.edu.au</u>

