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𝐸𝑁𝑒𝑔 Energy consumed under negative real time price conditions (kWh) 

𝐸𝐷𝑅 Energy consumed under price index demand response (kWh) 

𝐸𝐶𝐿 Energy consumed under controlled load timer (kWh) 

𝐸𝐸𝐻 Energy consumed under emergency heating (kWh) 

𝐸𝑆𝑎𝑛 Energy consumed under Legionella sanitation and standby (kWh) 

𝐸𝐹𝑅 Energy reserve to raise electrical network frequency (kWh) 

𝐸𝐹𝐿 Energy reserve to lower electrical network frequency (kWh) 

𝐸𝑇𝑜𝑡𝑎𝑙 𝐷𝑅 Energy consumed by heater under demand response (kWh) 

𝐶𝑁𝑒𝑔 Income from energy consumption at negative real time price conditions ($) 

𝐶𝐷𝑅 Cost of energy consumption under price index demand response ($) 

𝐶𝐶𝐿 Cost of energy consumption under control load timer control ($) 

𝐶𝐸𝐻 Cost of energy consumption under emergency heating ($) 

𝐶𝑆𝑎𝑛 Cost of energy consumption under Legionella sanitation and standby ($) 

𝐶𝐹𝑅 Income from reserves provided to raise electrical network frequency ($) 

𝐶𝐹𝐿 Income from reserves provided to lower electrical network frequency ($) 

𝐶𝐷𝑅𝑁𝑒𝑡 Cost of energy consumed under demand responds ($) 

𝐶𝑇𝑜𝑡𝑎𝑙 Total cost of the water heating energy consumption ($) 

Introduction 

Global electrical distribution networks are rapidly evolving from centralized generation to fragmented and 
variable distributed power generation [1, 2].  The environmental credentials and financial appeal of 
renewable generation, and its rapid deployment is leading to a reduction of the reliance on fossil fuel and 
nuclear energy to generate electricity.  Historical technical and financial limitations which supressed the 
uptake of renewable energy are being replaced with realistic targets and plans of 100% renewable energy 
[3].  Energy storage and demand management are now substantial limiting factors that hinder further 
uptake of renewable energy. 

Frequency control on a network has historically been managed utilizing the large rotational inertia of 
fossil/nuclear power generators.  As renewable energy replaces fossil/nuclear electrical generation, the 
requirement for frequency control is increasing [4].  Frequency control countermeasures are predominantly 
undertaken utilising fast response energy supply/demand devices such as batteries, solar PV acting as 
virtual inertia or wind turbines acting as synthetic inertia [5].    Whilst studies such as that by Basit, Dilshad 
[6] detail extensive frequency control using power electronic based solutions and energy storage, solutions
that consider demand management tend to be overlooked.  Daly, Qazi [7] analysed the impact of frequency



response reserves in electric water heaters at a network level where an increase of 5.7% in frequency 
response reserves was identified. 

Voltage control through demand control is not necessarily new, with crude time of use tariffs set to 
encourage users to predictably increase demand when network demand is minimal [8].  A more 
sophisticated study of water heaters operating under voltage demand response (DR) using a combination 
of fuzzy logic control (FLC) and particle swarm optimisation (PSO) demonstrated consumer cost savings of 
56% [9].  Two significant limitations in this study were the omission of real-time spot prices and thermal 
stratification of the water heater.  Numerous other studies have also analysed the DR potential of electric 
water heaters [10-13], however detailed modelling of the thermal stratification within the water heater has 
again been limited. This suggests further savings could be obtained with higher resolutions of price and 
water heater operating conditions. 

The challenge that this manuscript addresses is to change the control of electric water heaters from crude 
“off peak” control to sophisticated DR.  To achive this, the heater design and control complexity increase 
from one simulation to the next.  The aim of this is to replace local automated control such as controlled 
load (off peak), minimum thermal supply and sanitation control with DR to access lower purchased 
electricity prices and the financial benefits of frequency reserves.  It is demonstrated that a symbiotic 
relationship can be formed between network operator and consumers using water heaters as decentralized 
energy storage to stabilize electrical network voltage and frequency. 
 
Method 
 

In this manuscript the following dynamic inputs are used in TRNSYS [14] simulations for the calendar year 
2018 with a simulation time step of 1 minute: - 

• Recorded climatic conditions from Adelaide, South Australia at a frequency of 1 minute [15]. 

• Heated water thermal load as derived from South Australia Power Network (SAPN) using data from 

81 houses with water heaters on a controlled load.  The daily average SAPN recorded electrical 

consumption was converted to an average daily thermal consumption using a TRNSYS reference 

water heater simulation. 

• Recorded electrical network 5 minute real time (spot) price and frequency response ancillary 

services (FCAS) prices from Australian Energy Market Operator (AEMO) [16] 

A graphical example of the TRNSYS simulation is shown in Fig. 1. 

 
Fig. 1 Example of TRNSYS schematic of a domestic hot water system. 

 

All simulations were conducted in modelled water heaters with constant values shown in Table 1. 

Table 1 Water heater geometric and thermal performance parameters 

Heater parameter Value 

Tank storage volume (L) 315 

Tank heat loss at Δ T = 55 K [17] (kWh/day) 2.5 



(U = 0.68 W/m2K) 

Tank inner diameter (m) 0.54 

Heater element size/s (kW) 3.6 

Thermostat dead band (K) 8 

Note: the tank heat loss is calculated at each node and time step. 

Simulation A is the baseline that all subsequent simulations are compared to, and consists of a popular off 
peak storage electric water heater operating over the 2018 calendar year with a thermostat temperature of 
60°C. 

Demand response of the water heater was subject to the real time spot price which is reflective of the 
abundance of electricity on the grid.  To determine if the current spot price is conducive to water heating, a 
price index was utilized that compared the current price to historical prices [18].  The real time price index 
was then set to a threshold which can either be static or dynamic.  The static price index in Simulation B 
was set to 0.5 which indicated a spot price of ½ the historical average.  If the price index was ≤ 0.5 then the 
water heater would consume energy until the thermostat set point is reached.  Additional controls were 
included to ensure minimum thermal supply (emergency heating) and Legionella sanitation was 
maintained. 

Further demand response controls were included in simulations C & D whereby the price index threshold 
was dynamic (see Fig. 2).  In this case the water heater state of charge (SOC) was used to dynamically 
adjust the price index response threshold.  Simulation C utilised a linear price index threshold whereas 
Simulation D used a 4th order polynominal price index threshold. 

 
Fig. 2 Dynamic price index response threshold (demand response can operate in hatched area) as a function of 

heater state of charge. 

The frequency reserves that could be obtained through demand response of water heaters was quantified 
in simulations B to D by assessing the energy consumption at any point in time and then assigning the 
corresponding raise or lower frequency reserve price.  Frequency responses as directed by AEMO were 
simulated by either activating or ceasing water heater energy consumption. 
 

Results and discussion 

Annual energy consumptions and purchased energy costs are shown in Fig. 3 and Fig. 4 respecively. 



 
Fig. 3 Annual energy consumption of water heaters under various demand response algorithms. 

 
Fig. 4 Annual cost of purchased energy of water heaters under various demand response 
algorithms. 



The benefit of heating in periods of negative spot price is obvious and coupled with the financial returns of 
FCAS reserves the purchased energy savings are substantial.  Whilst the energy consumed by all 
simulations was similar, the cost of purchased energy significantly changed from $207 for the baseline case 
to -$101 for simulation D representing a 149% reduction in purchased costs (turning a wholesale energy 
expense into an income).  
 
It needs to be noted here that the costs are calculated from the wholesale spot and frequency reserve 
prices.  Historically the fluctuating wholesale prices have not been passed to retail customers where time of 
use tariffs are used.  However, the emergence of new business models where the spot price is reflected 
more accurately in the retail price will encourage consumer engagement in demand response [19].   
 
The impact of emergency heating at times of high energy costs as seen in Simulation B demonstrates that 
static price index thresholds are inferior to dynamic price index thresholds.  Of interest is that there is 
minimal financial difference between the first and forth order dynamic price index controls as seen in 
Simulations C & D.  In the short term, where the frequency of negative spot prices is predicted to increase 
[20], arguably the 4th order dynamic control in Simulation D would be preferable.  However in the longer 
term, the expected decrease in the volatility of spot prices (due to increased grid scale energy storage and 
demand management) may result in the first order control in simulation C being preferable because of 
reduced need for sanitation heating, and higher demand response control. 
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