

Towards highly efficient and low cost quantum dot solar cells

Mengmeng Hao ACAP postdoctoral research fellow

17 Dec 2021

Research background

	Silicon solar cells	Perovskite thin film solar cells	Perovskite QD solar cells
Efficiency	26.3%	25.2%	18.1%
Cost	\$0.70 / Watt	\$0.35 / Watt	-
Stability	> 25 years	<2 years	-
Fabrication	High energy consumption	Low temperature Solution method	Room temperature Facile printing

Stability: 1. Shelling by ligand or other material 2. Enlarged surface energy

Low cost: Cheap raw material, solution

Facile fabrication: Printable

Outline:

- Improve performance: Composition and ligand management
- ✓ Advantage: QD vs Bulk
- ✓ Extended application: Semitransparent solar cell

Synthesis strategy

Direct synthesis of Cs_xFA_{1-x}Pbl₃ QDs is hard:

Crystallization is fast, within seconds.

Coordination force between A cations and PbI₆⁴⁻ cage is different: Cs⁺>OLA⁺>FA⁺

Cation exchange method:

Ligand assisted cation exchange

Optical and structure properties

- Tuneable light absorption and PL wavelength
- Black phase perovskite structure
- Uniform particle size ~14 nm

Distribution of A cation

${\rm In}\ {\rm Cs}_{\rm 0.5}{\rm FA}_{\rm 0.5}{\rm PbI}_{\rm 3}\ {\rm QDs}$

Small FAPbl₃ and CsPbl₃ domains randomly distributed within an single crystalline particle

Ligands and defects:

Ligand density in perovskite QD solutions

Purification times	CsPbl ₃	FAPbI ₃	
0	25-40	20-35	
1	2.5-5.5	9-15	
2	0.1-0.2	1-5	
	Cs _{1-x} FA _x PbI ₃		
0	2.5-10		
1	1.0-5.5		
2	0.1-0.5		

Atomic-resolution HAADF-STEM images of Cs_{0.5}FA_{0.5}Pbl₃ QDs obtained in OA-less condition (a, b) and Cs_{0.5}FA_{0.5}Pbl₃ QDs obtained in OA-rich condition (c, d). The circled areas indicate the defective sites.

Performance of Solar cell device

Device fabrication

- Separated process for crystallization and film formation
- Room temperature coating process

TEM cross-section image

NREL Best Research Cell Efficiencies

Defect reduction

The space charge–limited current (SCLC) measurements

Co-effect of FA alloying and rich ligands during synthesis

	CsPbI ₃	Cs _{0.5} FA _{0.5} P bl ₃ ligand rich	Cs _{0.5} FA _{0.5} P bl ₃ ligand poor
PCE (%)	9.6	16.1	10.1
V _{oc} (V)	1.16	1.13	1.08
l _{sc} (mA cm ⁻ ²)	15.4	18.4	14.6
FF (%)	53.9	77.9	64.1
Carrier lifetime (ns)	26	97	32
V _{tfl} (V)	0.092	0.207	0.275
Defect forming energy (ΔE_{I_i}) (eV)	0.40	0.65	-
Defect forming energy V _{Pb} (ΔE _{VPb}) (eV)	0.56	0.72	-

QDs vs bulk:

- Separated process for crystallization and film formation
- Room temperature coating process
- Ligand passivate defects and improve stability
- Impeded charge transport

- Large grain, high efficiency
- Substrate dependant
- Sensitive crystallinity control

QDs vs bulk: reduction of nonradiative charge recombination

Calculation from PLQY under $V_{\rm OC}$ condition

Device stability

✓ $Cs_{0.25}FA_{0.75}PbI_3$ -Bulk device. Quickly lost over 20% of initial efficiency

✓ $Cs_{0.25}FA_{0.75}PbI_3$ -QD devices. Retained **90%** of original PCEs.

✓ $Cs_{0.5}FA_{0.5}PbI_3$ -QD devices. Retained *94%* of original PCEs.

Suppressed phase segregation

Semitransparent

Thank you

Mengmeng Hao | PhD Candidate School of Chemical Engineering m.hao1@uq.edu.au

Corresponding authors: Dr. Yang Bai; Prof. Lianzhou Wang

Collaborators:

- Mr. Stefan Zeiske, Ms. Nasim Zarrabi, Dr. Ardalan Armin and Prof. Paul Meredith from Swansea University;
- Dr. Long Ren, Ms. Ningyan Cheng and Dr. Yi Du from University of Wollongong;
- Mr. Junxian Liu and Prof. Yun Wang from Griffith University;
- Prof. Yongbo Yuan from Central South University;

Hao et al. Nat Energy 5, 79–88 (2020). (Front cover)