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Hot Carrier Solar Cells: Phonon Bottlenecks to slow Carrier Cooling
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Absorption of photons of energy higher than the semiconductor bandgap results in “hot
carriers” that lose their excess energy to the lattice through several phonon interaction
processes, collectively called “thermalization”, before undergoing radiative recombination. A
greater understanding of this thermalization is valuable in the design of a “hot carrier solar
cell” that may have very high efficiency. [1] Quantum well nanostructures have been shown to
slow thermalization compared to bulk materials. [2] In this work, we have studied hot carriers
effects in epitaxially grown GaAs/AlAs QW heterostructures with both periodic QW structures
to give varying acoustic impedance. [3,4,5] And with aperiodic QWs to give a phonon cavity
nanostructure. This study will give a greater understanding of thermalization processes and
the effects on phonon-phonon and carrier-phonon interactions of phonon modulation QW
nanostructures. [6,7]

Phonon bottleneck mechanisms
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In Multiple Quantum Wells (MQW) folding of acoustic phonon modes gives optical-like
modesthat interact with hot electrons. In addition mini-gaps open at zone centre & zone edge
due to mis-martch in acoustic impedance. These can interrupt LO-LA phonon interactions and
potentially slow carrier cooling.
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MBE epitaxial growth of phonon bottlenecks

Mini-gaps from anti-crossing in periodic MQW Phonon cavity (101.8 GHz) - aperiodic chirped QWs
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MQW are grown by epitaxial growth in MBE of equal thickness GaAs/AlAs bilayers. This gives
mini-gaps at zone centre, where the mini-gap width increases with barrier:well ratio and the
mini-gap energy decreases with barrier:well ratio.

Whereas phonon cavities are also grown by epitaxial growth of GaAs/AlAs
but where the bilayers have specifically varying thicknesses. With the appropriate spacing this
can give a strong reflection at a specific phonon energy of 101.8 GHz, which will modulate the
interaction with ~100 GHz phonons.

Results and Discussion

Periodic MQW (30nm well / 5nm barrier) with mini-gaps Aperiodic QWs - Phonon cavity ~ 100 GHz
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Comparison of all MQW and phonon cavity samples )Fm"'“
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As shown in (a) fast carrier thermalization time shows a linear dependence on acoustic
phonon mini-gap. Whereas the phonon cavity has a quite short fast thermalization time close
to smallest mini-gap.

(b) shows that a slow carrier thermalization time increases with mini-gap width and that the
phonon cavity has a very short acoustic phonon thermalisation time.

(c) & (d) indicate that the fast and slow carrier lifetimes decrease with increasing mini-gap,
except for the smallest gap. The phonon cavity also has long lifetimes.

And (e) shows that carrier temperature increases with phonon mini-gap (except for the
smallest gap which has the highest temp. The phonon cavity has an intermediate carrier
temperature.

Conclusions

Both MQWs and phonon cavities show effects on carrier thermalisation time, due to the mini-
gap position and energy in the former and the specific reflection at 100GHz in the latter.

Further work will look at these relationships in more detail and determine there overall
effects on carrier cooling rates.
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