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Context and Motivation 
Fabrication of solar cells requires several process steps.1 Manufacturers must ensure the 

consistency of each of these steps so that each solar cell satisfies a design specification.2 However, 
variations between solar cells are inevitable. These variations can originate from the quality of raw 
materials, processing under slightly different conditions, and changes in the external environment.3 
Ideally, the mean performance of solar cells fabricated in a production line is constant, thus, the cell-
to-cell variance is expected to be minimal and random. Minimal and random variations are preferred 
as they do not have apparent long-term effects on production. 

Electroluminescence (EL)4 and photoluminescence (PL)5 imaging are common end-of-line 
characterisation tools in assessing the performance of solar cells. These techniques capture spatial 
information from solar cells to highlight defective areas.6 Previous studies have also used 
luminescence images to predict the critical electrical parameters of the solar cells.7–10 This study 
presents a new capability based on these images. We demonstrate a novel technique to determine 
production line variations using time-series EL images. 
 
Proposed Methodology 

The random variability of the time-series EL images is determined through lag-sequential 
analysis. The concept of this technique is illustrated in Figure 1. For example, a dataset where x0, 
x1…xn correspond to measurements of the 0th, 1st…nth solar cell is presented. The original dataset 
(denoted as lag-0) is shifted to generate lag datasets as shown by the blue circles. Lag-1 
corresponds to the original dataset shifted by one timestamp. Similarly, lag-2 is shifted by two 
timestamps, and lag-n is shifted by n timestamps. In this study, n ranges from 1 to 2,000. These lag 
datasets are then subtracted from the original dataset to produce the lag-differenced datasets. As 
an example, in Figure 1, the lag-1 differenced dataset is represented by the orange circles. Through 
the lag-differenced datasets, the cell-to-cell variance between various timestamps can be 
determined. 

 

 
Figure 1. Visual illustration of lag-sequential analysis 

 
We then define a variable that we named the ‘Rhett Factor’ (RF) to quantify the random 

variability of the dataset: 

 RF(n) = σ2�Xlagn,diff�
2∗σ2(X)

, (1) 
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where σ2(Xlagn,diff) is the variance of the lag-differenced dataset at lag-n and σ2(X) is the variance of 
the original (lag-0) dataset. Note that σ2(X) is used in the denominator because it is assumed that 
the maximum possible variance in the datasets is the population variance. The data is statistically 
independent at a given lag if its RF is equal to unity. In this case, the lag’s mean is the same as the 
mean of lag-0 and the variations at this lag are random. 
 
Proof of Concept 

To demonstrate the method, we generated 10,000 time-series measurements of cells with a 
mean efficiency of 23% and a standard deviation of 0.15%. Figure 2(a) shows the randomly 
generated Gaussian distribution of the data as a function of time. The resulting RF-vs-lag is shown 
in Figure 2(d). The lag where RF reaches unity (in this presented case, lag-1) is the ‘statistical batch 
point’. The statistical batch point defines the batch size where samples are statistically independent 
of one another. A lower statistical batch point is preferred in a production line as it indicates that the 
variance among cells is more random. Since the data is completely random in the simulation, RF 
reaches unity already from lag-1 (and stays constant). 

We then simulated measurements with a varying mean for every 100 cells as shown in Figure 
2(b). The corresponding RF-vs-lag is presented in Figure 2(e). RF reaches unity only at around lag-
100, hence, in this case, the statistical batch point is 100. Further analysis is provided by dividing 
the graph into two: (1) a yellow region before the statistical batch point, and (2) a red region after the 
statistical batch point. The yellow region shows the degree of random variability at smaller lags while 
the red region provides a measure of stability in the data. At lag-50 (yellow region), the RF is around 
0.75. This means that for every batch of 50 cells, 75% of the variance is random whereas 25% (the 
remainder) of the variance is related to mean shifts. Higher RF (>0.9) in the yellow region is preferred 
as it indicates that a lower percentage of variance is related to mean shifts. Above lag-100 (red 
region), large deviations from unity are observed, thus, indicating high instability in the data. This is 
expected since this dataset was generated by randomly shifting the mean for every batch of 100. 
Small fluctuations in the red region are preferred as they represent a more stable production line 
(fewer changes in the mean). 

Lastly, Figure 2(c) illustrates simulated measurements with outliers. As can be seen in Figure 
2(f), although RF reaches unity at lag-1, the outliers introduce clear variations (‘dips’). These dips 
could affect the interpretation of RF. Thus, to avoid misleading interpretations, it is recommended to 
discard outliers in further analysis, as we are interested in the randomness of the main distribution. 

 
Figure 2. Simulation results: (a) Randomly generated efficiency data vs time, (b) efficiency 
data with a varying mean for every 100 cells vs time, (c) efficiency data with outliers vs time, 
(d-f) corresponding Rhett Factors vs lag of graphs (a-c), respectively 
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Experimental Results 

A total of 17,000 EL images of multi-crystalline silicon (mc-Si) cells were collected from an 
industrial production line. These images are ordered according to their timestamps and are quantified 
based on two metrics: (1) the mean of the pixels, and (2) the standard deviation of the pixels. For 
simplicity, the outliers (identified via the modified z-score method11) were excluded in the 
computation of the RF. 

Figure 3(a) presents the normalised EL mean intensity (transformed to mean=0 and variance=1) 
vs time. Around 88% of the cells are within the main distribution (0±1.5 region). Approximately 8% 
of the cells fall below the main distribution indicating that these cells are relatively darker (with lower 
intensity). Figure 3(b) shows the computed RF as a function of lag. Here, lag-600 (where RF reaches 
1) is the statistical batch point. Hence, the variance is completely random within batches of 600 cells 
and each batch is statistically independent of one another. At lag-250, the RF is around 0.92 meaning 
92% of the variance is random for batches of 250 cells while 8% of the variance reflects shifts in the 
mean. From lag-600 to lag-1250, the RF increases while it decreases from lag-1250 to lag-2000. 
This unstable RF indicates shifts in the mean EL counts, indicating possible shifts in the efficiency 
(or at least the obtained voltage). 

 
Figure 3. (a) Normalised EL mean intensity vs time, (b) Rhett Factor vs lag 

Figure 4(a) shows the normalised open-circuit voltage (Voc) as a function of time of the same 
dataset. Around 8% of the cells fall below the 0±1.5 region, indicating that these cells have a lower 
Voc than the main distribution. Figure 4(b) shows the corresponding RF-vs-lag graph. A similar trend 
as the RF-vs-lag graph for the EL mean intensity can be observed. The statistical batch point is also 
at lag-600 and instability is noticed in the red region. Further analysis shows that the EL mean 
intensity is 95% correlated with the measured Voc of the cells. Hence, the EL mean intensity can be 
used to investigate the Voc variability in production lines. 

 
Figure 4. (a) Normalised Voc vs time, (b) Rhett Factor vs lag 

We also explored the standard deviation of the EL images as a possible metric. Although the 
EL mean intensity and EL standard deviation are two different image metrics, the corresponding RF-



 

29 Nov - 1 Dec 2022, Newcastle, Australia 

 
vs-lag graphs are comparable. Hence, the EL standard deviation could also be used to investigate 
production lines. 
 
Outlook 

In this study, we proposed a simple and novel technique to investigate variations that can aid 
manufacturers in assessing and improving the quality of their production lines. Time-series EL 
images are used to identify random changes in an actual production line. Spatial information from 
EL images is translated to one-dimensional metrics and lag-sequential analysis is implemented. 
Using the Rhett Factor, a statistical metric based on variances, the degree of randomness and mean 
shifts in production lines are determined. Detailed analysis of additional EL image metrics related to 
solar cell performance will be presented at the conference. Future work will also include identifying 
components of variation to help pinpoint the sources of non-randomness in production. 
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