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Abstract—Luminescence imaging is essential for solar cell performance and reliability analysis. It is 
used to identify spatial defects and extract key electrical parameters. To reliably identify defects, 
high quality images are desirable, however, acquiring such images implies a higher cost and/or 
lower throughput as they require better imaging systems and/or longer exposure times (as using 
cheaper cameras or reducing the exposure time often increases the amount of noise). Therefore, 
this study proposes a deep learning model to significantly reduce the noise in electroluminescence 
images, hence, improving their quality without the need for additional hardware expenses or longer 
exposure times. The proposed deep learning approach improved noisy images by 30.4% and 
39.3% in terms of the peak signal-to-noise ratio and the structural similarity index, respectively. 

Introduction 

To reach the Paris climate goals, the international renewable energy agency (IRENA) states that 
the total solar photovoltaic (PV) capacity must reach almost 18 times the 2018 levels by 2050 [1]. A 
promising method to support this massive growth is through improving the efficiency of PV 
manufacturing using machine learning. 
Electroluminescence (EL) imaging is a powerful method to inspect solar cells and modules [2]. 
When an electrical current is injected into a solar cell, luminescence is emitted [3]. The emission 
can then be collected by an infrared camera and the captured image reveals the solar cell’s spatial 
defects and key electrical parameters [2]. Higher quality images provide more information which 
allows for more thorough image analyses [4]. However, these require expensive imaging systems 
with high quality cameras and optics. 
Deep learning [5], also known as neural networks [6], is a type of machine learning algorithm that 
has seen incredible advancements over recent years [7]. This can be credited to improvements in 
technologies, such as the graphics processing unit, and a surge in open-source digital data [8, 9]. 
The large, complex neural network architecture enables the use of deep learning in computer 
vision, outperforming classical image processing algorithms such as bicubic interpolation filters 
used in image restoration [10]. Today, the use of deep learning includes medical classification [11], 
speech recognition [12], and many more [13, 14]. Deep learning has also been shown to be a 
powerful tool for denoising [13]. Specifically, as demonstrated by Lu et. al. [11], the deep learning 
architecture U-net [15] has outperformed other deep learning models in terms of being 
architecturally simple, yet effective, in denoising medical positron emission tomography (PET) 
images. 
U-net models were first introduced by Ronneberger et al. [15]. They consist of a contracting path 
(encoder) and an expanding path (decoder). The encoder resembles a standard convolutional 
neural network (CNN) and the decoder mirrors the encoder. A key feature in this architecture is the 
skip connections between the same levels (the concatenations of the decoder with the 
corresponding layer from the encoder) – see Figure 1 [15]. 
In this study, we developed a U-net algorithm to significantly reduce the noise in EL images, 
enabling improvements in image quality without the need for expensive hardware or longer 
exposure times. This method presents a powerful approach to reducing the cost or to reducing 
measurement time (or a combination thereof) associated with EL imaging for solar cell and module 
inspection. 

Methodology 

For training the network, we used 7,680 EL images (520×520 pixels) of nine-busbar industrial 
state-of-the-art solar cells (~23% average efficiency). The trained network was then tested on 
1,920 previously-unseen EL images of the same type of solar cells. 
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The dataset consisted of noisy images and their corresponding clean image for training and 
testing. Noisy images were created from the original (‘clean’) EL images by adding, to each of the 
images, both Poisson (‘shot’) noise of 106 photons, and Gaussian (‘read’) noise with a mean of 0 
and a random variance between 0.0001 and 0.001 [16]. In EL systems, Poisson noise is produced 
due to the particle nature of photons that incident the camera while Gaussian noise is produced by 
conversion electronics in the sensor. 
 

 

 
The U-net model used here was similar to Ronneberger et al. [13], however, the encoder was 
replaced with a pre-trained CNN “Resnet-34” [17] on 100,000 images across 200 classes. The 
library “fastai” was used to facilitate the creation, training, and testing of the models. 
During training, the U-net model was trained in batches of four images at a time and the training 
images were cycled through 20 times (i.e., 20 epochs). The loss function used was the pixel-to-
pixel mean squared error (MSE) as shown in Eq. (1). 

MSE =  1
𝑁𝑁
∑ (𝑦𝑦i − 𝑦𝑦�i)2𝑁𝑁
i=1 ,     (1) 

where 𝑁𝑁 is the number of training examples, 𝑦𝑦𝑖𝑖 is the original value, and 𝑦𝑦�𝑖𝑖 is the predicted value by 
the model. 
To evaluate the performance of the developed model, the peak signal-to-noise ratio (PSNR) [18], 
structural similarity index metric (SSIM) [18, 19], and visual inspection were used to compare each 
reconstructed image to the corresponding original (‘ground truth’) image. PSNR measurements 
range from zero to infinity where a smaller value implies a lower image quality as there is a higher 
pixel difference between the two images. SSIM measures the similarity of visual features between 
the two images. The SSIM ranges from 0 to 1, where unity indicates that the two images are 
identical and zero indicates no structural similarity. 

Results and Discussion 

Figure 2(a) presents a representative clean EL image from the dataset while Figure 2(b) shows a 
noisy image created from the clean image. Figure 2(c) presents the U-net reconstructed clean 
image. These figures also feature a zoomed-in region for clarity in the visual inspection. It can be 
observed that the noisy image has a grainy appearance compared to the original clean image from 
the dataset. The PSNR of the noisy image was reduced to ~30.7 dB while its SSIM dropped to 
~0.68. Examining the reconstructed image, it appears there is slightly less texture compared to the 
original. Furthermore, the reconstructed image clearly has little noise and includes all the key 
features of the original image, such as busbars, background luminescence, small defects, and 
measurement contacts. This is reflected in the significant improvements in the PSNR and SSIM of 
the noisy image, which increased by 30.3% and 39.6%, respectively. 

Figure 1. U-net architecture [13] 
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As discussed, the developed U-net models were tested on 1,920 unseen EL solar cell images. 
Figure 3(a) and Figure 3(b) present the PSNR and SSIM distribution of the noisy and reconstructed 
images. The noisy images averaged a PSNR of 30.69 dB and an SSIM of 0.682. The 
reconstructed images averaged a PSNR of 40.01 dB and an SSIM of 0.950. Hence, the model 
improved the average PSNR of the noisy image by 30.4% and the average SSIM by 39.3%. The 
significant improvements in these noisy EL images demonstrate the viability of this deep learning 
approach. To further reinforce the effectiveness of this U-net model in denoising real-noisy images, 
its experimental validation will be presented at the conference. 

 

 
Figure 2. Denoising applied by the U-net approach: (a) a representative original image, (b) a 
noisy image, (c) and a reconstructed image. Their corresponding PSNR and SSIM are shown 
for quantitative comparison. 

 

 
Figure 3. Violin graphs showing the distribution of (a) PSNR and (b) SSIM. The white diamond 
indicates the mean and the quartiles are shown by the vertical bar. 

                                                   (a)              (b)               
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Conclusion 

We present a novel deep learning U-net application that enables denoising and thereby 
significantly improves the quality of EL images. The developed U-net model successfully removed 
noise and improved the quality of the images with an increase of 30.4% in the PSNR metric and 
39.3% in the SSIM. Its success is visually reflected in the reconstructed images, which have much 
better clarity than the noisy EL images and are near indistinguishable from the original EL images. 
These results highlight the significant potential of our approach in reducing the need for long 
exposure times (e.g., in outdoor photoluminescence imaging) or expensive EL imaging hardware 
to inspect PV devices, consequently, decreasing the overall cost of PV production. 
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