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Introduction 

Studying the impact of distributed energy resources (DER) and different operating strategies on 
outcomes for customers, aggregators and the electricity grid requires access to customer electricity 
load profiles. Moreover, demand-side management programs can be more customised when energy 
service providers know about household characteristics. However, many households to not have the 
metering required to collect and store interval consumption data, there are few public data sets of 
Australian residential load profiles; and given the diversity in household characteristics, these can 
not readily be used in lieu of real consumption data to assess DER outcomes for a specific customer 
and therefore to inform decisions about energy tariffs and rooftop solar and battery deployment. For 
this purpose, it would be useful to be able to estimate the expected shape of residential load profiles 
based on household and appliance characteristics.   
 
Several past or current Australian projects have collected electricity consumption timeseries data of 
residential customers linked to household and appliance characteristics collected through household 
surveys. However only high-level statistics or benchmarks are published from these studies. One of 
these is the Energy Use Data Model (EUDM) dataset, collected by CSIRO as part of the National 
Energy Analytics Research (NEAR) program, which provides basic electricity consumption statistics 
for over 1800 Victorian households and over 600 Western Australian households, with analysis 
published in [1]. Another is the set of electricity consumption benchmarks for residential customers 
developed by Frontier Economics for the Australian Energy Regulator (AER). The benchmarks are 
typical annual and seasonal consumption figures for residential electricity usage in Queensland, New 
South Wales, the Australian Capital Territory, South Australia, Tasmania, and Victoria [2]. However, 
neither the raw data nor typical load profile shape for different household groups are published. Load 
profiles linked to surveys for about 4,000 households were published from the 2012-2013 Smart 
Grid, Smart City (SGSC) trial conducted by Ausgrid [3]. These profiles have been used by the 
research community for a range of analyses. The EUDM study used time series clustering to group 
electricity customers according to their load characteristics, however this method is not explicitly 
designed to assess the importance of customer characteristics that have an impact on load profile 
shape [4]. In another study the SGSC data was analysed to determine key drivers for residential 
peak demand on hot summer days [5]. However, to date, the SGSC data has not been used to 
assess the factors that are most important in determining the overall shape of the profiles. To date 
there have been no models published that can generate synthetic residential load profiles for 
customers with a diverse range of household characteristics.  
 
This paper proposes a normalised random forest (NRF) model for generating synthetic customer 
load profiles based on household and appliance characteristics, using the SGSC dataset. The 
results demonstrate the NRF model outperforms the RF model in predicting load profiles and also 
its application to be used for important feature selection.  
 
This paper progresses as follows. First, we briefly introduce the proposed RFN model. Next, in the 
results section, we compare the RF model with NRF, scaled with historical yearly data, and also 
compare the two models if feature selection methods such as permutation method and recursive 
feature elimination are applied.  Finally, we conclude the paper with some directions for future work.  
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Methodology 

In this section, first, we briefly review methods for estimating time series data and then describe the 
proposed NRF model. Next, we explain the two popular methods that can be used for calculating RF 
and NRF models' feature importance.  
 
In the literature, many methods are used for forecasting time series data. The most common 
techniques are artificial neural networks (ANNs), support vector machines (SVMs), and 
autoregressive integrated moving averages (ARIMAs). Random Forest (RF) is a state-of-the-art 
ensemble-based supervised machine learning method which is less frequently used in the literature, 
but offers a promising solution compared to ANNs, SVMs, and ARIMAs [6-7]. In contrast to load 
estimation problems, which are types of regression problems, SVM is more suited to classification 
problems.. ARIMA has been used in applications when the historical data is used to predict the future 
time series. It is often less efficient in forecasting load patterns when other inputs such as categorical 
variables are also used. 

RF models have been applied to a variety of machine learning tasks in recent years and can be 
trained on a combination of both categorical and numerical variables. RF work mainly on the basis 
of having multiple regression trees and averaging or voting the results produced by each regression 
tree. In order to produce the final output, the algorithm employs a process known as bagging. In 
more detail, an initial dataset is randomly sampled, and several dataset subsets are subsequently 
formed. Moreover, a set of features is randomly selected. The selection of random features 
significantly reduces the correlation between the datasets. Each of these subset datasets produces 
its own decision tree/learning model. As a result, the variance is greatly reduced in comparison to 
using a single decision tree. In the final step, the aggregation process is used to get the final result 
from the RF model. The new data for prediction is fed through all decision trees, each of which 
produces its own result. A vote or average of the results from all these trees determines the final 
outcome.  

In this work, to generate a synthetic load profile, we developed and compared the performance of 
both RF and normalised random forest (NRF) models. The NRF is an RF model that uses normalised 
historical load data and customer characteristics as inputs to the model (refer to Figure 1).  
 

a) NRF  

 
b) RF  

 
Figure 1. Methodology (a) normalised random forest (NRF) model, (b) random forest (RF) model. 

 
We assumed daily time horizon is divided into five blocks, namely (1) 12am-7am (2) 7am-10am (3) 
10am-3pm (4) 3pm-9pm, and (5) 9pm-12am. These specific time periods have been selected as 
they seem to represent distinct load patterns, i.e. night time with low electricity consumption, morning 
period, mid-day period, evening period and finally the last active period of the day. Each customer's 
time series values are normalised by dividing the load values in each time block by the total annual 
electricity consumption. Inputs to the NRF model are normalised historical load profiles (numerical 
input) and customer characteristics (categorical input).  
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Normalising the input load data is expected to enhance the RF model performance in predicting the 
shape of the load profile, rather than the size. The load profile generated could then be scaled using 
existing daily load benchmarks, or output from its underlying RF model to provide the predicted load 
profiles of the specific customers.   

 Feature Selection 

To train the NRF model, we use the SGSC dataset, which includes over 20 survey questions about 
household characteristics and appliance ownership, which are the features used to train the 
model. Having fewer features allows machine learning algorithms to be more efficient as well as 
more effective, since irrelevant input features can potentially mislead machine learning algorithms 
and result in worse predictive performance. In feature selection, a subset of the most relevant 
features is therefore selected to represent a dataset.  

For feature selection, we use two methods that are popular for providing unbiased results: (i) 
permutation-based: a feature's importance is calculated by measuring its increase in prediction error 
after permuting. Feature values are considered "important" if shuffling them increases model error 
because the model relies on them for prediction. The feature is unimportant if the model error is not 
affected by shuffling a feature's values, and the model ignores the feature for the prediction if the 
error remains unchanged. And (ii) recursive feature elimination (RFE): first, the model is fitted using 
all features in a given set, then each feature is removed one by one, re-fitting until we are left with 
the minimum necessary number of features (optimal number of features).  In our selection, we select 
the top features that are rated as important by both methods. This enhances the reliability of the 
results. 

Results 

In this section, first, we compare the NRF with the RF model. To begin with, we compare their 
performance using three metrics. Next, we rank each model's features using permutation and RFE 
methods.   
Comparison of RF and NRF models 

 

We used three metrics of (i) Pearson correlation, (ii) Spearman correlation, and (iii) mean absolute 
error  to evaluate the NRF compared to the RF model. The results are summarised in Table 1. On 
both models of NRF and RF, Spearman correlation and Pearson correlation produce very close 
values. However, NRF shows slightly higher correlation values, indicating that real and predicted 
load values are sufficiently correlated. The mean absolute error between the predicted and the real 
load profile is normalised using an average block value from real data (shown as NMAE in Table 1). 
The NRF model has a lower NMAE than the RF model, so overall it outperforms the RF model.   

 

Table 1. Comparison between RF model and NRF model 

Metric Pearson cor. Spearman cor. NMAE (%) 

Model NRF RF NRF RF NRF RF 

  0.91 0.84 0.90 0.82 27.9 37.3 

 
To compare the performance of the NRF model and the RF model, we plot the split violins of the 
predicted load profile versus the real load profile for each model, as shown in Figures 2a and 
2b. Each model's dashed line represents its median, first quantile, and third quantile. There is a 
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similar discrepancy between the medians of predicted and real data for RF and NRF models. 
However, the first quantile and third quantile of the predicted load versus real load are very close to 
each other in the NRF model compared to the RF model, which supports the results that are 
presented in Table 1.    
 
 

  
(a) NRF  (b) RF  

Figure 2. Comparison between the NRF model (a) and RF model (b), using violin plots.  

 
Comparison between RF model and NRF model based on feature Importance 

The SGSC data includes customer responses to over 20 survey questions. In this section, we rank 
the importance of each question (model’s feature) using the permutation method and RFE method 
described above. Results are summarised in Figure 3 and Table 2 respectively.  
 

(a) NRF 
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(b) RF 

 
Figure 3. Feature importance using permutation method, (a) NRF, (b) RF. 

It appears that applying permutation and RFE methods to the NRF model produces more meaningful 
results than those generated by applying the methods to the RF model.  The results of the 
permutation method on the NRF model (Figure 3a) differ significantly from the results of the 
permutation method on the RF model (Figure 3b), in that the results are normally distributed when 
applied to the NRF model, whereas the results of using the RF model are biased towards two of the 
total 14 features of the models. Table 2 compares the results of the RFE method when applied to 
both NRF and RF models. The RFE method yields three features as the optimal number in both 
models. This means that by having only three features which are ranked 1 in the RFE results, the 
algorithms provide similar output accuracy as we feed all features into the RFE algorithm as input. As 
a measure, we use an average importance value of 0.15. Therefore, features with importance values 
greater than 0.15 are considered to be the most important features in the model. In light of this 
assumption, combining the results of two methods of permutation and RFE, using the NRF model, 
the top features are 1) absence of air conditioning, (2) number of heated rooms, (3) having a pool 
pump, (4) number of occupants, (5) having controlled load, (6) connected to gas, and (7) having 
ducted air conditioning. With the RF model, the top features include (1) having a pool pump and (2) 
number of occupants. It is worth pointing out that NRF model, produce results that are in line with 
statistics. As an evidence, large share (40%) of household energy usage in Australia is attributed to 
space conditioning or heating and cooling which is well reflected in the NRF model results [8]. 
 

Table 2. Feature importance using recursive feature elimination (RFE) method 

Model NRF RF 

RFE 
results 

The optimal number of features is three. 

Best features are: number of heated rooms, has 
pool pump, not having air conditioner.  

Rank 1: not having air conditioner 

Rank 1: number of heated rooms 

Rank 1: has pool pump  

Rank 2: The building type is separate house 

Rank 3: number of occupants 

Rank 4: has controlled load 

Rank 5: has more than two refrigerators 

Rank 6: has gas connection 

Rank 7: has ducted air conditioner 

The optimal number of features is three. 
Best features are: has pool pump, number of occupants, has 
controlled load.  
Rank 1: has pool pump     
Rank 1: number of occupants       
Rank 1:  has controlled load     
Rank 2: number of heated rooms       
Rank 3: has ducted air conditioner             
Rank 4: use dryer often     
Rank 5: has gas connection     
Rank 6: has more than two refrigerators 

Rank 7: has split air conditioner 
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Conclusions 
 
We proposed a random forest model with normalised input load data to generate synthetic residential 
load profiles based on household and appliance characteristics. Results demonstrated that by 
normalising the random forest model, its performance is improved as well as its usefulness for 
applying permutation and recursive feature elimination methods for ranking features. The model can 
be scaled using estimated load values from the underlying RF model or by using existing energy 
usage benchmarks. The synthetic load profiles generated can be used to inform household decision 
making around energy tariffs and deployment of rooftop solar and batteries. The improved 
understanding of which factors most strongly influence the shape of the household load profiles, 
generated through this research, can be used to inform future data collection. Our future work will 
involve training the model with more data, particularly datasets representing different climate 
conditions in different states, to improve its generality and performance.  
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