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With the alarming issues of climate change and energy shortage, the importance of sustainable 
energy technologies has significantly increased [1] [2]. Photovoltaic (PV) energy is one of the most 
promising renewable technologies [3], whose cost has dramatically decreased over the past thirty 
years [4]. According to the International Energy Agency (IEA), PV-generated electricity is the 
cheapest form of energy in human history [5]. Nevertheless, the price of PV systems should be 
further reduced to improve the accessibility of PV energy in developing countries [6] and to obtain 
the full potential of this technology. One of the key methods to do this is by improving the power-
conversion efficiency of solar cells [7]. A key limitation towards improving cell efficiencies is the 
recombination-active defects in the silicon bulk [8]. To minimise the detrimental effects of these 
defects, it is essential to predict their energy levels (Et) and their electron and hole capture cross-
sections (σn and σp, respectively) [9] [10]. 
Commonly, bulk defects are classified as single-energy-level [9] or multi-energy-level [11]. This study 
will focus on two-level defects, which are a subset of multi-energy-level defects. Temperature- and 
injection-dependent lifetime spectroscopy (TIDLS) [12] is often used to extract the parameters of the 
defect [10] [13] [12]. In the case of single-energy-level defects, a few analysis methods are commonly 
employed. The most common method is the defect parameter solution surface (DPSS) method [12]. 
Other methods include the linearised DPSS method [14], the Newton Raphson method [10], and the 
machine learning (ML)-based approach [15]. However, in the case of two-level defects, there is only 
the pioneering study by Zhu et al. [13]. Here, we present a novel ML-based approach to extracting 
the defect parameters of two-level defects. 
To train the developed ML algorithms, a dataset of 800,000 defects and the corresponding lifetime 
curves with different temperatures was generated using the Sah-Shockley equation [11] with random 
selections of the defect parameters (Et1, Et2, σn1, σp1, σn2, σp2, and Nt; the subscript ‘1’ or ‘2’ indicates 
the level of the defect): 
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n1, n2, p1, and p2 are defined by Eqs. 2-5: 
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In Eq. 1, τtwo-level refers to the recombination lifetime of the two-level defect, σn1 (σp1) is the electron 
(hole) capture cross-section of the first energy level, σn2 (σp2) is the electron (hole) capture cross-
section of the second energy level, and vn (vp) is the electron (hole) thermal velocity calculated using 
the model of Green et al. [16]. Furthermore, n (p) is the electron (hole) density, Nt is the total defect 
concentration, n0 (p0) is the thermal equilibrium electron (hole) density, and Δn is the excess carrier 
density. In Eqs. 2 to 5, ni is the intrinsic carrier density calculated using the model of Couderc et al. 
[17] with bandgap narrowing by the model of Yan et al. [18], Et1 and Et2 are the defect energy levels, 
Et1 is the transition energy between the most positively charged state and the middle charge state 
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while Et2 is the transition energy between the most negatively charged state and the middle charge 
state [13] [19]. Once the dataset was created, it was randomly split into a training set (90% of the 
simulated data) and a validation set (10%). Ei is the intrinsic fermi energy of silicon, kb is the 
Boltzmann’s constant, and T is the bulk temperature. 
Two solutions for Et are usually obtained in one-level defect parameter extraction methods such as 
DPSS [12], one in each bandgap half (higher or lower than Ei). As a result, these two cases require 
separate training instances for the ML-based one-level defect parameter extraction [15]. Similarly, 
for a two-level defect, the DPSS residual map using TIDLS data proposed by Yan [13] identifies 
multiple possible solutions in different bandgap halves as well. Since two-level-defects have two 
energy levels, this study will use four cases: both energy levels above Ei (named here Set 11); both 
below Ei (Set 00); Et1 > Ei and Et2 < Ei (Set 10); Et1 < Ei and Et2 > Ei (Set 01). 
The proposed method is divided into two steps as shown in Fig. 1. In the first step, the defect 
parameters are extracted by regression for the four cases listed above. In the second step, the ML 
algorithm is trained to classify the most likely solution out of the four cases. 

 
Figure 1: A flow chart for defect parameter extraction using machine learning. 

To evaluate the performance of the developed ML models, two scoring methods are used. For the 
regression task, the coefficient of determination (R2 score) is used as defined by Eq. 6 [20]: 
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where the label ‘pred’ and ‘true’ refers to the predicted and true values of the test dataset respectively 
and R2 ranges from zero (very poor prediction) to unity (perfect prediction). The accuracy matrix is 
utilised for the classification task, which is the ratio of the number of correct predictions to the total 
number of predictions [21]. 
For the regression task, a random forest model [22] was trained. The predicted vs simulated values 
of the validation set for a p-type wafer (bulk doping of 1015 cm−3, Set 11) are presented in Fig. 2, the 
red line represents the ideal prediction while the green dots are the actual prediction. The defect 
parameters of the first level (Et1, σn1, σp1) are extracted with a high level of accuracy (R2 > 0.9). The 
predictions of Et2, σn2, σp2, are reasonable, but less accurate (R2 > 0.6). The difference in the 
prediction qualities could be as the Sah-Shockley recombination lifetime is more sensitive to changes 
in the first-level defect parameters in p-type wafers. 
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Figure 2: The predicted vs simulated parameters for a p-type wafer in Set 11 (bulk doping 
density of 1015 cm-3). 
The correlation coefficients of the different sets are summarised in Table 1. The reason for the use 
of the logarithm of the capture cross sections is that it ranges over several orders of magnitude 
(typically 10-13 cm-3 to 10-17 cm-3  [23]). It can be seen that for p-type doping when the set number 
begins with the subscript “1”, meaning Et1 > Ei, the prediction for Et1, σn1, and σp1 are more accurate, 
and vice versa for Et2. The reason for this pattern is still under investigation. 

Table 1: The coefficient of correlation (R2 score) for the four sets (a p-type wafer) 

 
The confusion matrix of the classification model is shown in Table 2, the rows correspond to the true 
class while the columns represent the predicted class; the number represents the percentage of this 
prediction compared to the dataset size. The correct predictions are shown in the diagonal. At this 
stage, the average accuracy for the four sets is about 67%. Furthermore, the specificity of each set 
is shown on the rightest column, which is the ratio between the correct classification over the actual 
population of each set. It seems that the ML model has difficulties identifying Set 11 correctly. 

Table 2: The confusion matrix of the classification model. 
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To summarise, this research presented a novel ML-based approach to solving a challenging problem 
– the extraction of the defect parameters of a two-level defect from TILDS data. The defect 
parameters of the four possible cases are first extracted. A classification model then predicts the 
most likely solution. We note a difference between the prediction accuracy of Et1, σn1, σp1 and Et2, 
σn2, σp2. This is due to the difference in the sensitivity of the lifetime with different parameters for a 
given set of doping densities and/or temperatures. However, this is not a limitation when the same 
two-level defect is present in both p- and n-type wafers. Future work will focus on improving 
prediction accuracy and uncovering the reason for better predictions of some parameters than 
others. 
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