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1. Abstract 

Internal quantum efficiency measurements are an important characterisation technique that provides 
critical information on the performance of solar cells. Common methods to analyse these 
measurements include qualitative comparisons to the ideal quantum efficiency, identifying current 
losses at specific regions of the cell, and extracting key electrical and optical parameters. Extracting 
those parameters often requires time-consuming (and often manual) fitting approaches. This study 
proposes using machine learning algorithms to automatically extract these parameters for gallium 
arsenide solar cells with a very high level of accuracy. The proposed method will assist in unlocking 
the full potential of quantum efficiency measurements as a powerful characterisation tool for a wide 
range of solar cells. 

2. Introduction 

The spectral response is the current output of a device under different wavelengths of incident light; 
it reveals crucial information about the device's performance [1]. The internal quantum efficiency 
(IQE) is obtained by measuring the incident monochromatic illumination intensity, the output current, 
and the reflectance, all as a function of wavelength [1]. Commonly, IQE is defined as the ratio of the 
number of carriers collected to the number of photons that have penetrated the device. IQE 
measurements are often conducted to obtain information about the current losses associated with 
specific solar cell regions such as parasitic absorption at the front or rear surfaces. IQE 
measurements are also used to calculate the device’s expected short circuit current [2]. 

When analysing IQE measurements of solar cells, users often attempt to fit their data by 
implementing analytical or numerical methods, or simulating the solar cells in software such as 
PC1D [3], SunSolve [4], Griddler [5], or others [6], [7]. These methods can be time-consuming and 
frequently require deep knowledge about the solar cell and reasonable assumptions regarding its 
electrical and optical parameters, making the process quite challenging. Furthermore, different 
analytical approaches often need to be used simultaneously as each method may only be suitable 
for a specific wavelength range [8]. These limitations often lead to the utilisation of only part of the 
full potential of IQE measurements of gallium arsenide (GaAs) solar cells, focusing only on qualitative 
analysis of the expected losses. 

An additional, although rarely discussed, challenge is associated with the fitting of non-unique 
solutions. These cases result from multiple combinations of parameters that provide near-identical 
fits to the IQE measurement, although some of these combinations are far from the actual values. 

Therefore, to overcome these limitations this study proposes using a machine learning (ML) pipeline 
to accurately extract electrical parameters from IQE measurements of GaAs solar cells. We also 
show that the correct utilisation of powerful ML models can help to address cases where non-unique 
solutions exist. This automated approach is shown to unlock the full potential of IQE measurements 
and will strongly support the research and development activities of GaAs solar cells. 

3. Methodology 

A. Dataset 

The Python-based program SolCore [7] was used to generate a large training dataset of 40,000 
GaAs solar cells following the structure suggested by Tobin et. al [9]. This structure consists of a 
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front Al0.83Ga0.17As window (29.3 nm), p-type emitter (660 nm), n-type base (3,600 nm), and 
Al0.3Ga0.7As rear buffer layer (1,000 nm) [9]. A dual layer of ZnS/MgF2 (50 nm / 100 nm) antireflection 
coating (ARC) was applied on the front side. 

The parameters varied in the simulation were the diffusion length of the minority carriers of the 
emitter (Le) and bulk (Lh), and the surface recombination velocity of those regions (Sp and Sn, 
respectively). The resulting IQE curves were obtained at 10 nm steps in the wavelength range of 
300 – 1,000 nm. The effect of each parameter on the IQE curve is shown in Fig. 1. As expected, the 
IQE in the short and long wavelength regions increases with longer Le and Lh, respectively. On the 
other hand, increasing the value of Sp and Sn reduces the IQE in the short and long-wavelength 
regions, respectively. Notice that the IQE is much less sensitive to the bulk terms (Lh and Sn), so it 
was expected that the trained models would have higher errors predicting these terms. 

 

Figure 1. The effect of (a) Le, (b) Lh, (c) Sp, and (d) Sn on the IQE measurements 

B. Machine learning 

The ML pipeline involves an array of random forest (RF) models [10]. The RF model is a well-suited 
solution for this regression problem due to the large collection of uncorrelated estimators (trees) that 
make up the model (forest). The proposed approach also uses a ‘chain regression’ technique [11] 
where the predictions of the previous model are passed to the training data of the next model. This 
has the added advantage of utilising any correlation between the four parameters being predicted 
by the array of RF models. The result is a package of four RF models that predict the four electrical 
parameters in sequential order. The dataset is split into an 80:20 training and test split. The 
predictions of the test set and the resulting IQE fits are evaluated using the root mean square error 
(RMSE) [11] formula. 

Interestingly it was found that ~14% of the measurements can be fitted with minimal error using more 
than one set of parameters, hence, there are many non-unique solutions. In this study, non-unique 
solutions are defined as combinations of parameters (Le, Lh, Sp, and Sn) that provide great IQE fit 
(RMSE < 0.002) while still having a relatively large (> 10%) error in the prediction of one of the 
parameters. To further investigate the non-unique solutions, the outputs of all the RF trees for each 
parameter prediction were extracted (contrary to the standard approach that only uses the average 
value across all the trees). As the bulk parameters were found to be more sensitive to this issue, 
RMSE heatmaps were generated for all the combinations of the bulk parameters predicted by the 
individual RF trees. Using these heatmaps, all the solutions that provide a good IQE fit can be 
identified (see Section 4). 

To overcome the challenge of non-unique solutions and further improve the prediction results, two 
feature engineering steps were applied before the training of the RF models. The first step was 
calculating the IQE difference array (the differences between two IQE measurement points taken 
10 nm apart). The second step was based on principal component analysis (PCA) [12] and it was 
only applied for training the RF models predicting the bulk terms, Lh and Sn. It was found that this 
mixed feature engineering approach between the emitter and bulk significantly improved the 
accuracy of the extracted parameters compared to when only the IQE measurements were used to 
train the four models. 
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4. Results 

An example of a non-unique solution and the corresponding RMSE heatmap is presented in Fig. 2. 
As shown in Fig. 2(a), despite the significant error in Lh, the measured and predicted IQE are almost 
identical (RMSE of 0.0006). The RMSE calculated for each of the combinations of the predicted bulk 
parameters is plotted in the heatmap in Fig. 2(b). The red star is the true (input) combination, 
whereas the blue diamond is the combination of bulk parameters predicted by the standard RF chain 
model (average of all the trees). As can be seen, a diverse range of bulk parameter combinations 
results in RMSE < 0.002. 

 

Figure 2. An example of a non-unique solution case from the test set. The true and predicted IQE are plotted in (a) 
with an inserted table of the four parameters and their residuals. A heatmap of the bulk terms in (b) shows the 
range of values that provide a good IQE fit. The blue diamond is the ML prediction while the red star is the true 
value. 

Surprisingly, the feature engineering steps can minimise this challenge and obtain accurate 
parameters despite the non-unique solution problem. The predicted vs true plots of each of the four 
parameters after the feature engineering steps are shown in Fig. 3. The RMSE values show that the 
ML-based method achieves very accurate predictions for all four parameters. Furthermore, most 
errors can be described by a decreased sensitivity of the IQE at certain ranges for those parameters. 
In Fig. 3(a), the higher errors in Le are caused by the combination of Sp dominating the emitter at 
larger values and diffusion lengths that are much greater than the width of the emitter. The IQE is 
less sensitive in both cases and so the ML model struggles to obtain the correct values of Le. 
Similarly, in Fig. 3(b), the higher errors in Sp are caused by the low values of Le dominating the 
region. The higher errors found in Fig. 3(c) are due to the lower sensitivity of the IQE at the extreme 
ranges of Sn, with a similar issue in Fig. 3(d) for larger values of Lh. The emitter parameters also 
impact the long wavelength region of the IQE measurements [see Fig. 1(a) and 1(b)], especially at 
low values of Le. In such cases, it was expected to cause further challenges for the bulk parameter 
predictions. This effect is represented in Fig. 4, where the cases with higher prediction errors in Lh 
and Sn also had low values of Le. Nevertheless, the ML pipeline still achieves very accurate 
predictions for most of the test set. Investigating the IQE fits of the test set indicated that only 0.7% 
of the 8,000 samples had an RMSE above the threshold of 0.002 (bad fit). Of the good fits, only 0.4% 
still encountered the non-unique solution issue (RMSE < 0.002 while still having a relative error 
above 10% for at least one of the parameters). 
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Figure 3. Predicted vs true plots are presented in the chain order: a) Le, b) Sp, c) Sn, and d) Lh. The colour bars 
represent the true values of the corresponding parameter in the same region of the solar cell. 

    

Figure 4. The same predicted vs true plots of a) Sn and b) Lh from Fig. 3(c) and 3(d), but the applied colour bars 
are the true values of Le in each sample. 

These results show that the proposed ML pipeline can obtain very accurate predictions for the four 
electrical parameters of GaAs solar cells. However, the training data used has been simulation data, 
which is absent of the expected noise in typical IQE measurements. Therefore, in the final 
conference proceedings, the resilience of this approach to noise will be investigated with both 
simulated noise and real GaAs solar cell IQE measurements. 

5. Conclusion 

This study proposes an ML-based method to predict four critical performance parameters from IQE 
measurements of GaAs solar cells. The method employs a mixed feature engineering approach for 
the emitter and bulk terms while also applying a chain regression to utilise any correlation between 
the parameters. Remarkably, training the RF models in this manner made them very resilient to the 
challenge of non-unique solutions where a large range of Lh and Sn would result in very good fits of 
the measured IQE. This training method can be used for different solar cell structures, unlocking the 
full potential of IQE measurements for the research and development of GaAs and other types of 
cells. 
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