
This paper describes the forecasting of 15 minute solar irradiation on a horizontal plane (GHI) 
for Seattle, USA, as well as 15 minute solar farm output for Broken Hill, Australia. The goal is to 
set error bounds on the forecast, specifically estimating 15 quantiles, from essentially 
minimum to maximum. In practice, the quantiles calculated are 0.005, 0.025, 0.05, 0.1, 0.2, . . . , 0.8, 
0.9, 0.95, 0.975, 0.995 . The forecast horizons for the solar farm output is one step ahead (for time t 
+ 1 time interval performed at time t). The forecast for GHI is part of a benchmarking project
under Task 16 of the International Energy Agency.  The Task focuses on Solar resource for High
Penetration and Large Scale Applications. The procedure entails  first calculating point forecasts,
and then using quantile regression techniques to form the quantiles of the resulting noise terms.
The modelling process is performed on a year’s data for 2017 for both locations, and then tested
on data from 2018. In the standard modelling manner, the models developed for both the point
forecasts and quantiles on the 2017 data are applied to the 2018 data, whereupon the
quantiles are added to the point forecasts for verification of the efficacy of the procedure.

The point forecast contains a model for the seasonality using Fourier series for the significant 
cycles. For GHI, they are once a year, once and twice a day, plus beat frequencies to modulate the 
daily cycle to suit the time of  year. Since the solar farm has an oversized field, thus capping 
the output, the only necessary cycles are once and twice a day. Once the seasonality 
model is subtracted from the original series, the residuals are represented by an ARMA(p, q) 
forecast model. The combination of the models forms the point forecast. The noise terms  from 
this process are modelled using quantile regression. 

For quantile level 𝜏 of the response variable, 
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In this 𝜌 is called the check function and is equal to 

𝜌 ൌ 𝜏maxሺ𝑟, 0ሻ ൅ ሺ1 െ 𝜏ሻmaxሺെ𝑟, 0ሻ 

𝑟 is the error betwen the noise 𝑧௜ at time 𝑖 and the model, and if the error in the regression in a 
single period is positive, then the check function multiplies the error by 𝜏 and by 1 െ 𝜏 if negative. 
The regression is for the noise 𝑧௜ at time 𝑖 as a function of the noise at the previous 5 time steps. 

The quantile regression approach for obtaining the prediction intervals was used because of the 
skewness of the noise distributions in each case. To evaluate the worth of this method, the results 
were compared to assuming the noise terms are independent and identically distributed (iid) 
normal variates. Two metrics are used for the comparison - Coverage and Mean Width of the 
intervals. Coverage means that if one is designing a 95% prediction interval, approximately 95% 
of the observations should fall within the interval. As well as coverage, a smaller mean width of 
intervals is sharper and better. The comparison was performed for three probabilities - 80%, 90% 
and 95%. Interestingly, the assumption of iid normal was slightly better for the 95% case as both 
approaches had good coverage, but the normal intervals had a smaller mean width. For the other 
two cases, the quantile regression approach was significantly better. In fact, the coverage of the 
normal assumption case for the 80% case was of the order of 88%, significantly different from that 
desired. The interval widths for both that case and 90% using the normal assumption were much 
greater than the quantile regression usage. 
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Figure 1 gives a representation of the resulting prediction intervals for Seattle.  Note that the 
intervals, as well as the forecast, are zeroed at night. 

Figure 1. Seattle GHI, one step forecast with 90 and 95% prediction intervals 

Table 1 gives the quantitative metrics for in sample (2017) and out of sample (2018) results and 
comparison with the benchmark model.  As is the custom in the literature all evaluations are done 
for the solar altitude equal to or greater than 10o. 

Table 1 Seattle coverage and interval widths 

When analysing the forecasting for solar farms, it is important to note that the Broken Hill 
installation, like many in Australia, is capped at a specific level of output.  Since the panel field is 
oversized, it also means that on a clear day, the output will be constant for a number of hours, 
even in winter – see Figure 2 as an example. 
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Figure 2. Two days of output from the Broken Hill solar farm 

As a result, when constructing the prediction intervals, they are constrained to not exceed the cap, 
as well as being set to zero at night, as was the case with the Seattle GHI. 

Figure 3 shows the output, forecast and 90 and 95% prediction intervals for Broken Hill, and Table 
2 gives the associated error metrics. 

Figure 3. Output, one step ahead forecast and prediction intervals for Broken Hill 
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Table 2: Broken Hill coverage and interval widths 

Conclusion 

The use of quantile regression has been demonstrated for construction of prediction intervals for 
both GHI and solar farm output.  The GHI analysis is part of an IEA Task 16 benchmarking project.  
The project includes forecasting with prediction intervals for various horizons.  Since the statistical 
techniques shown here are only sensible for short term forecasting, the extension is only being 
undertaken for steps 𝑡 ൅ 15, 𝑡 ൅ 30, 𝑡 ൅ 45 and 𝑡 ൅ 60 minute horizons.  The other extension of the 
work being undertaken is to compare the results with the more complicated procedure outlined in 
Boland and Grantham (2018).  In that paper the errors underwent a normalising transformation, 
and an exponential smoothing average forecast was used on the squared errors.  Then prediction 
intervals were constructed and back transformed and inserted around the point forecasts. 
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