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Photovoltaics -Sustainability Criteria:
Infancy, ~unior, & Adult Examination Levels

-Niche
markets

Affordability

-EH&S R&D facilities
& Start-ups

Resource
Availability Environmental Impact

Fthenakis, The sustainability of thin-film PV, Renewable & Sustainable Energy Reviews, 2009
Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, Energy Policy, 2009
Fthenakis, Sustainability metrics for extending thin-film PV to terawatt levels. MRS Bulletin, 2012




U.S. Department of Energy

Energy Efficiency and Renewable Energy

Facility Specific EH&S Assistance

« Assistance on R&D and Start-up Facilities
Occupational Exposure Prevention
Safety Audits/ Incident Analysis

Broad EH&S Issues

« Hazard Analysis of New Technologies, Materials & Processes
Toxicology of New Materials

Lead-Free Solder Technology Transfer

Waste Management/ Recycling

Information Dissemination

— PV EH&S Tutorials at IEEE PVSC

— Four PV EH&S Workshops with Wide Industry Participation
— 170 Publications on PV EH&S; all technologies
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Photovoltaics -Sustainability Criteria:
Joncy, Junior (1998-2005), & Acult Examination Levels

-Niche markets
-Peak shaving markets

Affordability

4

-EH&S R&D facilities
- Energy Use

-EH&S Standards for Industry

Resource Lowest
Availability Environmental Impact

Fthenakis, The sustainability of thin-film PV, Renewable & Sustainable Energy Reviews, 2009
Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, Energy Policy, 2009

Fthenakis, Sustainability metrics for extending thin-film PV to terawatt levels. MRS Bulletin, 2012
Fthenakis & Lynn, Photovoltaic-Systems Integration and Sustainability, Willey, 2018

Images from: Fthenakis & Lynn, Photovoltaic—Syst%ms Integration and Sustainability, Wiley, 2018



Photovoltaics —Sustainability Criteria:
Joney, cunior, @ Adult (2005-) Examination Levels

Can PV compete with

,‘N electricity from fossil
ays fuels?
= Affordabilit -

/" .EH&S Ra&D facilities R
-EH&S Standards for Industry
- Energy Return on -LCA & Recycling

Energy Investment
- Te, In, Ga, Ge, Ag in PV
- Li, Co in Batteries

Resource Lowest
Availability Environmental Impact

- Large PV Power Plants
\_Environmental Impacts 4

Fthenakis, The sustainability of thin-film PV, Renewable & Sustainable Energy Reviews, 2009
Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, Energy Policy, 2009
Fthenakis, Sustainability metrics for extending thin-film PV to terawatt levels. MRS Bulletin, 2012

Images from: Fthenakis & Lynn, PhotovoltaiC—Syst%ms Integration and Sustainability, Wiley, 2018



Addressing Issues and Perceptions on PV
Environmental Impact -Proactively

PV power plants can pollute the environment

PV Energy Return on Energy Investment is too low
PV deployment uses too much land

PV power plants create a Heat Island effect

PV growth is constrained by materials availability

Journal peer-review journal and conference
publications on Life-Cycle Emissions, Recycling techno-
economic feasibility, Energy-Pay-Back Times,
Greenhouse Gas emissions, External Costs, Use of
Land, Comparisons with Nuclear, Heat Island potential,
Material Recovery from Recycling



Lowest Environmental Impact- Effective Dissemination
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Greener Green Energy:
Today's solar cells give more
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Science News
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Iglg] New photovoltaics change costs

For Tech Insiders On February 2008
How free is Solar Energy?

Q;thcwﬂork@'imcﬁ Solar Power Lightens Up with Thin-Film Technology
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Dark Side of Solar Cells Brightens
A life cycle analysis proves that solar cells are cleaner

April 25, 2008

February 21, 2008
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Affordability -A Grand Plan for Solar Energy

= By 2050 renewable energy to supply 69% of electricity,

| mu 35% of total energy needs of the U.S.
R%IIEEII{%II:XIIS Filiomn Zwe/bel Mason, Fthenakis, Jan. 2008

A GRAND PLAN FOR

SOLAREN Spektrum
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The technical, geographical and economic feasibility for solar energy to supply the
energy needs of the U.S.,
Vasilis Fthenakis, James Mason, Ken Zweibel, Energy Policy 37 , 2009
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Environmental Impacts-Life Cycle Analysis

_[ Experimental Research at BNL & Columbia U. ]_

Accidental
emissions

M, Q M, Q M, Q M. Q M, Q M, Q
v v v v
Mgt%\lr\{al Material o Manufacture s Installation/ y| Decommiss | | Treatment
Acquisition Processing Operation -ioning Disposall
A4 A A H
v v v v v M, Q v
E E E E E E
v
Recycling
M, Q: material and energy inputs v
E: effluents (air, water, solid) Separations E
Recovery

Basic Metrics

 Energy Payback Times (EPBT)
 Greenhouse Gas Emissions

 Toxic Emissions

 Resource Use (materials, water, land)
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CdTe PV Fire-Simulation Tests: XRF Analysis

XRF-micro-spectroscopy -Cd Mapping in PV Glas

Fthenakis, Fuhrman, Heiser, Lanzirotti, Fitts, Wang, Emissions and Encapsulation of Cadmium in CdTe PV Modules during Fires, Progress in
Photovoltaics, 2005
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Recycling R&D: CdTe PV Modules

PV Module Fragménts Recycling of Spent Electrolyte

e
o:
Removal of Cu from Liquid Removal of Cd and Fe from Liquid %
H,SO, Using Resin A Using Resin B n:
v _wlr _Llf _~lr o:
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Glass Slurry . \L
Elution of Column Elution of Column Selective Precipitation ;
A B l
] -
Tellurium
Filtratio
Facility
ion —
e) Cd Metal ;
v
Clean Glass Cu Recovery &S Elec(t;:ac:rvmmng

Fthenakis V. and Wang W., Separating Te from Cd Waste Patent No 7,731,920, June 8, 2010

Wang W. and Fthenakis V.M. Kinetics Study on Separation of Cadmium from Tellurium in Acidic Solution Media Using Cation
Exchange Resin, Journal of Hazardous Materials, B125, 80-88, 2005

Fthenakis V.M and Wang W., Extraction and Separation of Cd and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap,
Progress in Photovoltaics, 14:363-371, 2006.
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Large Scale PV -The Value of Recycling

Affordability in a
competitive world
Low Cost

Te in CdTe
In in CIGS

Life cycle impacts
& risks lower than
alternatives

Ge in a-SiGe & llI/V
Ag in c-Si

Resource Lowest
Availability Environmental Impact

* Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, Energy Policy, 2009
* Fthenakis, The sustainability of thin-film PV, Renewable & Sustainable Energy Reviews, 2009
* Fthenakis, Sustainability metrics for extending thin-film PV to terawatt levels. MRS Bulletin, 2012
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PV Uses less Land than Coal

13000 Land requirement for Land requirement
| surface coal mining- for PV in the SW:
12000 © US avg: 320 m2/GWh 310 m2/GWh

Springerville, AZ

Transformation (m2/GWh)

Fthenakis and Kim, Renewable and Sustainable Energy Reviews, 2009;
Burkhardt et al (2011)
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Use of Land is Environmentally Friendly

g, Dual Use of Land

Array 1

(a)

- _

Array 46

Protect Sensitive Species i

San JoaquiriFox Array 1

Giant Kangaroo Rat (GKst . . : .

Other 1 [ -l
(b)

«  Avoid Sensitive Areas , _

«  Minimize Impact on Ground Fig. 11 Air temperatures from 3-D simulations during a sunny day
a) Al atures at ght of 1.5 b): at at ¢

«  Maintain & Improve Vegetation J a) An l»el‘ll]\?n ures at a height of 1.5 m: b) air temperatures at a

height of 2.5 m.

Fthenakis V., Green T., Blunden J. Krueger L., Large Photovoltaic Power Plants: Fthenakis V. and Yu Y., Analysis of the Potential for a Heat Island Effect in Large Solar
Wildlife Impacts and Benefits, Proceedings 37t IEEE PSC, 2011. 15 Farms, Proceedings 39t" IEEE PVSC, 2013



Energy Payback Times & Energy Return on
Energy Investment Historical Evolution

EPBT (years)

EROI

IEA INTERNATIONAL ENERGY AGENCY

Methodology Guidelines on Life Cycle
15 Assessment of Photovoltaic Electricity
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Report IEA-PVPS T12-03:2011

Irradiation of 1700 and 2400 kWh/m?2/yr

» Fthenakis V., PV Energy ROI Tracks Efficiency Gains, ASES Solar Today, 2012
» Fthenakis V., PV Total Cost of Electricity from Sunlight, Proceedings of IEEE, 2015
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1.2 Irradiation: 1,700

\ KWh/m2*yr
0.8 ™ Irradiation: 2,300
kWh/m2*yr
0.6
0.4
0.2

sc-Si_2015_17% sc-Si_2020_20.5% mc-Si_2015_16% mc-Si_2020_18%

[y

EPBT [yrs]

o

Fthenakis, V. and Leccisi, E., 2021. Updated sustainability status of crystalline silicon-based photovoltaic systems: Life-cycle energy and
environmental impact reduction trends. Progress in Photovoltaics: Research and Applications, 29(10), pp.1068-1077.
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CED [mi/kwp]

m CED (reference module efficiencies)

® GWP (reference module efficiencies)

Lecissi, Fthenakis, Progress in Photovoltaics, 2021

25 CED (future potential efficiencies)

S GWP (future potential efficiencies)
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Remaining Challenges and New Opportunties

Photovoltaics End-of-Life Management/ Recycling
Implementation
Dual Use of Land:

« Agriphotovoltaics

 Ecosystem Services from solar facilities

Variable Renewable Energy Systems Integration

Addressing Problems of Humanity: Solutions enabled by

abundant low-cost solar energy
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The Future: Problems awaiting Solutions

Top 10 problems of Humanity for the next 50 years
Richard Smalley (1943- 2005)

Energy

Water

Food
Environment
Poverty
Terrorism & War
Disease
Education
Democracy
Population

© 00 N O

—_
S
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Problems and Integrated Solutions

Top 10 problems of Humanity for the next 50 years
Richard Smalley (1943- 2005)

:

0

I

Poverty
Terrorism & War
Disease
Education
Democracy
Population

© 90 N SOl

—_
=
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Solar Water Desalination & Electrolysis
New Partnerships - New Markets

What Is common between water desalination and
electrolytic production of hydrogen?

 They both use water and currently use fossil energy

« Water desalination emits 2-20 kg CO,. per m* H,O produced

 H, from Natural Gas Steam Methane Reforming (SMR) generates
11.8 kg CO,() Per kg H, produced

« The cost of energy Is the major cost contributor in both

Solar Desalination

* PV-RO-Flexible Desalination Design (Winner US-Israel Design Challenge, 2017-2018)

« Solar Thermal Advanced Desalination Designs (with Plataforma Solar de
Almeria, Spain, 2018-2021 and NREL 2022-2024)

Solar Hydrogen

 Dynamic Operation for time-of-use electricity pricing (with Dan Esposito,
Chem Eng)
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Water Electrolysis with Variable Energy

Efficiency vs. Current Density in PEM electrolyzers

Levelized Cost of H2 (LCOH)

IV and efficiency curves

PEM slectrolyzer L 6
I 6 100% | High current ow
el EZ oo 2 oo degnsity efficiency
o\ F:8 24 } Al A
@ ..' f:',é 90% 6.0Acm? = = 62% LCOH
® gti S22 } so% B -’.-;4 .
N v o Mini
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012 3 456 : ;. CAPEX
Current density (A cm?) I&ow <_:urrent v High efficiency f . ) J ) L
ensity 0 1 2 3 4 5 6
Current density (A cm2)
Current density & H2 production California 2020
4.50
4.00
—3.50
23.00
# 2.50
T 2.00 H, from SMR;

8 1.50 NG $3-10/MBtu
- 1.00
0.50
0.00

Morning Daytime Evening

Ginsberg G.,Venkatraman M., Esposito D., Fthenakis V, Minimizing the Cost of Green Hydrogen Production through Dynamic Polymer

Electrolyte Membrane Electrolyzer Operation, Cell Reports Physical Science, 3(6), 100935, 2022

Ginsberg M., Esposito D., Fthenakis V, Designing Off-Grid Green Hydrogen Plants Using Dynamic Polymer Electrolyte Membrane

Electrolyzers to Minimize the Cost of Hydrogen Production, Cell Reports Phyii&:al Science, 4(10), 101625, 2023 c1oag  Cwstme fox Lifs Cycis Asaiyuie




PV plant
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Ginsberg G., Zhang Z., Atia A., Esposito D., Fthenakis V., Integrating Solar Energy, Desalination and Electrolysis, Solar RRL, , 6(5), 2021
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Closing Remarks

The PV industry evolves on all sustainability dimensions and | am
very lucky and happy to be part of this evolution.

EH&S vigilance and proactive approach must continue.

Recycling end-of-life systems becomes an important aspect of
sustainability and needs to be optimized to help rather than hinder
the affordability of PV systems.

Low cost solar energy creates new opportunities while addressing
humanity’s big problems.

www.clca.columbia.edu
email: vmf5@columbia.edu
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CdTe Module Fire-simulation Experiments

12" x 2.5" sa\mple of CdTe PV cell

Exhaust \

to hood \ Air
= -
/ CET——— in
={ ik

Quartz Retort

~

Three-Zone High Temperature Furnace

"Ceramic Sample
Holder

Scrubber 1200 J—
(Nltnc ACId) 1000 m
» Weight Loss Measurements

» Inductively Coupled Plasma (ICP) Analysis of Cd & Te Emissions
» X-ray Fluorescence Micro-Spectrometry of Cd in Molten Glass
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Solar Water Desalination & Electrolysis
New Partnerships - New Markets

What Is common between water desalination and
electrolytic production of hydrogen?

« They both use water and currently use fossil energy

« Water desalination emits 2-20 kg CO, . per m?* H,O produced

 H, from Natural Gas Steam Methane Reforming (SMR) generates
11.8 kg CO,() Per kg H, produced

« The cost of energy is the major cost contributor in both

CAPEX
‘6%

O+M
8%

%020 Electricity
MSF MED SWRO 66%

PEM System CAPEX: ~$700 — 1,000/kW
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e with kerfless

s
§ e m Ground-mounted BOS
_E. 8,000 » Module
g » Thin-film
's 6,000
§ » Sicell
§ 4,000 « Si wafer
Sii
2,000 e
. . u Silicon (MG+50G)
0
Cz21% DW 20% PSC-Cz PSC-DW
25.5% 25%
Single Junction Tandem

Illumination Czochralski Direct Wafer
AM1.5 1 sun 22.5% (688mV, 39.8mA/cm?, 82.3% FF) 21.4% (667mV, 39.5 mA/cm?, 81.3%)

80% transmission above
780nm (~1.6eV)

7.21% (660mV, 13.1mA/cm?, 83.3%FF)

6.76% (638mV, 12.9mA/cm?, 82.3%)
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Material Candidates for Longer Lives

Alternative back contact materials for CdTe solar cells

a. In,O:Sn (ITO), In,O4, ZNO, CdO
b. ITO or ZnO plus ZnTe and doping element (D)

Alternative PV module edge sealant materials
a. Polyisobutylene (PIB) with dessicant filler

b. Silicone + Polyisobutylene
c. AclarTM [poly-chloro-tri-fluoro-ethylene (PCTFE)]
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Comparisons of Back-Contact Options

CED [MJ/m2] GWP [kgCO2eq/m2]

0.40 2.50E-02

0.35

0.30 2.00E-02

0.25 1.50€E-02

0.20

0.15 1.00E-02

z;: 5.00E-03

0.00 e . . 0.00E+00 — . .

"\ \'\' \% \h \" \s C\ \~ \‘» ‘0’ \h \‘9 \b 6
§ § § 5 § 3 ¢ 5 & & 5 5 S &
\«0/ 0’9/ 9}0/ oo/ qu/ Q’)‘Q/ Q‘ \«Q/ JQ/ qle/ <‘°/ Q,XOI exg/ N
&8 v & 48 v o s
& & it 2 '\.<‘°x N & & x“o" A 2 ®

Impact Indicator Units Al ITO+ZnTe+D % difference
Cumulative Energy Demand (CED) MJ/m?2 2.39E-01 3.72E-01 56
Global Warming Potential (GWP) kgCO2eq/m2 2.05E-02 1.97E-02 -4
Acidification Potential (AP) kgSO2eq/m?2 1.14E-04 1.23E-04 7
Human toxicity potential (HTP) cancer CTU/m?2 1.43E-09 4.62E-09 223
Human toxicity potential (HTP) non cancer CTU/m2 3.58E-09 1.97E-08 450
Eco-toxicity potential (ETP) CTU/m?2 5.73E+00 1.29E+01 125
Ozone depletion potential (ODP) CFC-11 egq/m?2 6.57E-10 1.60E-09 143
Abiotic resource depletion potential (ADP) kg Sb eq/m?2 4.20E-08 7.83E-06 18,559
Eutrophication potential (EP) kg PO4-eq/m2 3.04E-05 8.12E-05 167
Photochemical Oxidation kg C2H4 eq/m.  7.02E-06 1.21E-05 72

Estimated by using Simapro 9.2; C?%t—off System Modeling



CED [MJ/kg]

N 8 2 8 8 B &8 8

Paolyisobutylene Synthetic rubber Silicone

=

Impact Indicator

Cumulative energy demand (CED)

Global warming potential (GWP)
Acidification potential (AP)

Human toxicity potential (HTP) cancer
Human toxicity potential (HTP) non cancer
Eco-toxicity potential (ETP)

Ozone depletion potential (ODP)

Abiotic resource depletion potential (ADP)
Eutrophication potential (EP)
Photochemical oxidation potential (POP)

GWP [kgCO2eq/kg]

Units
MJ/kg
kgCO2eq/kg
kgSO2eq/kg
CTU/kg
CTU/kg
CTU/kg
CFC-11 eqg/kg
kg Sb eq/kg
kg PO4-eq/kg
kg C2H4 eq/kg
34
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=

dge-Sealant Options

Palyisabutylens Synthetic rubber

Synthetic rubber
8.51E+01
2.35E+00
1.10E-02
6.29E-08
2.15E-07
4.99E+02
5.09E-07
5.03E-05
3.67E-03
6.39E-04

Silicone

Aclar
1.47E+02
8.36E+00
6.31E-02
2.46E-07
1.80E-06
2.73E+03
3.65E-06
2.34E-04
1.66E-02
2.64E-03

% difference
73
255
474
290
734
447
618
366
352
313



System LCA Results

Assumptions:

Degradation Rate is reduced from 0.3%/yr to 0.2%/yr and then 0.1%/yr
Operational Life is increased from 30 yrs to 40 and then 50 yrs

—-Dperation Life (years) under 1800 kWh,/m2/yr--

Environmental Impact Indicator
Global Warming Potential (GWP)
Human toxicity potential (HTF)

Eco-toxicity potential (ETP)
ODzone depletion potential (ODP)

Abiotic resource depletion potential (ADP)
Eutrophication potential (EP)

Environmental Impact Indicator

Global Warming Potential (GWP)

Human toxicity potential (HTP)
Eco-toxicity potential (ETP)

Ozone depletion potential (QDF)

Abiotic resource depletion potential (ADP)
Eutrophication potential (EP)

Units /kWh

EED.E-'_' q
CcTu
cTu

g CFC-11 eq

g5beq

g PO4—--eq

30
10.3
3. 8E-09

11.7
8.5E-07

2 0E-03
2 0E-02

40
7.7
2 8E-09
8.7
6.3E-07
1.5E-03
1.5E-02

50
29
2 2E-08

6.7
4 9e-07

1.1E-03
1.1E-02

-—Operation Life (years) under 2300 kWh/ma2 fyr--

Units/kWh

eC DE'.".l
CTU
CTU

g CFC-11 eq

ES5beq

g PO4— eq

35

30

8.1
3.0E-09
9.2
6.7E-07
1.6E-03
1.5E-02

40
6.0
2.2E-09
6.8
5.0E-07
1.2E-03

1.1E-02

50

4.6
1.7E09
5.3
3.8E-07
5.0E-04
3.9-03



e EROI PE 1800 kWh/m2/yr e EROI PE 2300 kWh/m2 /yr

EROI £ROI e 2300 kWh/m2/yr e ERO €] 1800 KWh/m2/yr
160.0 149.9
140.0
120.0
86.4
100.0 117.3
80.0 91.1
60.0 \-67.6 508 45.0
40.0 r 25.9 / =
20.0 w'
50 5 27.3 35.2
0.0
30 40 50

Operation Life (years)
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2 o COE (¢/kWh

3.5

3.0

2.5

2.0

Degradation/yr 0.003 0.002 0.001
Life (yrs) 30 40 50
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Source: GWI DesalData

$0.76

BEEE

:

$0.29
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GHG Emissions from Life Cycle of Electricity
Production: Comparisons

1400

1200

O Materials
0 Operation

[EEN
o
o
o

B Transportation

O Fuel Production

(00}
o
o

GHG (g CO2-eq./kWh)

200 — —
24 12 24
 — —— —

O I I I I !
Coal (Kim and Natural Gas Petroleum W PV, CdTe M

Dale 2005) (Kim and Dale(Kim and Dale (Baseline - (Fthenakis (Fthenakis et al,
2005) 2005) Fthenakis and et al, 2016) 2016)
Kim, 2007
Fthenakis, California Energy Commission, Nuclear Issues Workshop, June 2007

Fthenakis & Kim, Life Cycle Emissions..., Energy Policy, 35, 2549, 2007
Fthenakis & Kim, ES&T, 42, 2168, 2008; update 2016
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Perovskite PV

CED PSC RtR GP: 265 MJ/m? CED PSC SP alt. 1: 534 MJ/m?
g ® Encapsulation -
BCL (MoOx/Al) {100 nm) » Encapsulation - BCL (MoOx/Al) (100 G,w,'@w Glass/Glass
(gravure printing); 27.06; RtR_Glass/PET nm) (evaporation); (2sides); 255.76; (2sides)
HTL (CuSCN) (700 nm) 10% 158.73; 29% 48% = FTO (500 nm)
{gravure ?ﬂ'lﬂﬂl); » FTO (500 nm) (oxygen plasma
33.13; 12% (gravure printing) and vacuum)
et ( e ETL ($n02)
) (spray =
Absorber layer = ETL (Sn02) (60nm) s X A 60
(MAPbBI3) (300 nm) (gravure printing) ———— (wa:l;l:)(smv
(gravure printing);
6.69; 3% i « Absorber layer
; :\MAPM;) l‘;v;or nm) || Absorber layer (MAPBIS) (300
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Through the Eye of a Needle: An Eco-Heterodox Perspective on
the Renewable Energy Transition

Megan K. Seibert I* and William E. Rees '-?

' The REAL Green New Deal Project, Albany, OR 97321, USA; wrees@mail.ube.ca

2 Faculty of Applied Science, School of Community and Regional Planning, University of British Columbia,
Vancouver, BC V6T 122, Canada

* Correspondence: megan.seibert@realgnd.org

Abstract: We add to the emerging body of literature highlighting cracks in the foundation of the
mainstream energy transition narrative. We offer a tripartite analysis that re-characterizes the
climate crisis within its broader context of ecological overshoot, highlights numerous collectively
fatal problems with so-called renewable energy technologies, and suggests alternative solutions
that éntail a contraction of the human enterprise. This analysis makes clear that the pat notion of
“affordable clean energy” views the world through a narrow keyhole that is blind to innumerable
economic, ecological, and social costs, These undesirable “externalities” can no longer be ignored.

3. Problems with So-Called Renewables

Here, we holistically examine renewable energy (RE), focusing on the widely over-
looked limitations of the RE technologies commonly set forth as solutions (but that do not
constitute all possible RE options). This examination shows that RE cannot deliver the same
quantity and quality of energy as FFs, that the espoused technologies are not renewable,
that their production—from mining to installation—is fossil-energy-intensive, and that
producing them—particularly mining their metals and discarding their waste—entails
egregious social injustices and significant ecological degradation.
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The material published in this “Discussion™—and the very reason for which we decided to publish it—requires a
clarification on the part of the journal Management; therefore, | advise readers to peruse this foreword before
embarking in the task of studying the often polemical statements and counter-statements contained in the Seibert
and Rees paper, in the Diesendorf and Fthenakis et al. critique, and in the replies by Seibert and Rees.

Let me first reiterate that at Energies, in the over 12 years of my tenure as EiC, we have consistently made
avery effort to adopt a completely “unbiased publishing policy”. This means that any scieptific opinion—controyversial

O

as it may be—on any topic falling within our journal's scope is pear-reviewed with the u
for the energy-conversion-systams community, to its scientific merit, to the methods |of

| must begin this foreword by asking our

appropriateness of the citations, conclusions, ethics, and academic style. Our record in this readers and our constituency to forgive me for

a source of great pride for us.

For a series of reasons, the original Seibert and Rees manuscript (S&R in the fol
system in spite of the warning signals given by two of our reviewers: it would
reasons of such a mistake here, but as the Editor in Chief, in own responsibility to enforce our
publication standards; therefore, | must begin this foreword by asking our readers and our constituency to forgive me
for accepting the original manuscript without requiring the authors to make some obvious corrections (that, in light of
their response reported below, | believe they would not have accepted).

First of all, the original S&R paper is not a “review paper” but clearly an “opinion paper” (ses, for instance,
Section 4.3 in the original S&R paper and the last sentence in their response to Diesendorf). We removed the
attribute “review paper” from our records as soon as some of our EB members signaled this mistake.

Second, the original Seibert and Rees paper is not only clearly an opinion paper but also a strongly biased one.
This emerges from a carsful analysis of its original text and of the authors’ responses to Diesendorf and Fthenakis at
al. | have made a personal list of the inconsistent “technical” statements in their writing but chose not to report them
here because this is obviously not—nor should it become—a personal “technical bullfight”. One point is, however,
noteworthy: the fundamental idea that the overshoot is the only measure of ecological impact is an opinion not
substantiated by facts, and presenting it in such a fideistic fashion constitutes a profound lack of respect for the large
community of scholars, researchers, and experts that hold a different opinion and propose different environmental
indicators. | would also like to signal that S&R’s contention that theirs is the only promising approach to the much-
needed transition to (pseudo) sustainability is just plain wrong. As for their quoting Kuhn {why not Popper and
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