

HEAVY INDUSTRY LOW-CARBON TRANSITION COOPERATIVE RESEARCH CENTRE

SOLAR-INDUCED MINERAL CARBONATION OF MINE WASTE: A TECHNO-ECONOMIC AND EMISSION ANALYSIS

Leok Lee, Woei Saw, Elliott Lewis, Alfonso Chinnici

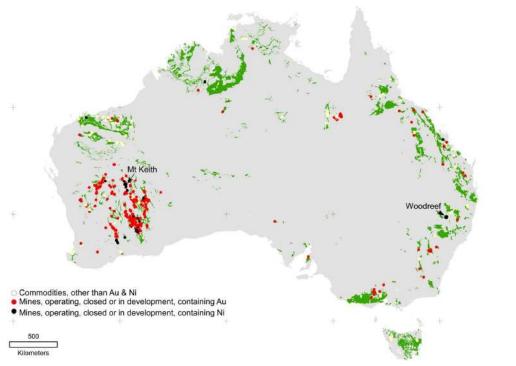
Asia-Pacific Solar Research Conference 2023, Melbourne

What is Mineral Carbonation?

• It is a naturally occurring process whereby certain silicates convert to carbonates absorbing CO₂

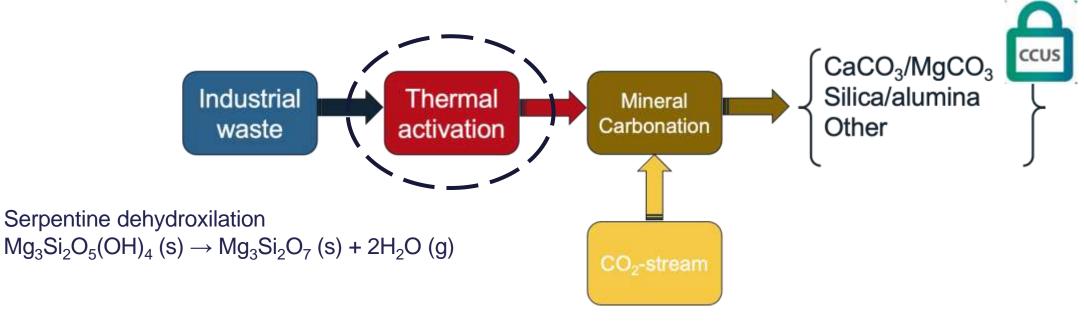
 $MgSiO_4(s) + CO_2(g) \rightarrow MgCO_3(s) + SiO_2(s)$

- CO₂ stored in a solid form over 1000-years scale, plus formation of valuable co-products (e.g., silica, carbonates)
- Ideal candidates are mafic/ultra-mafic rocks and tailings rich in Mg and Ca



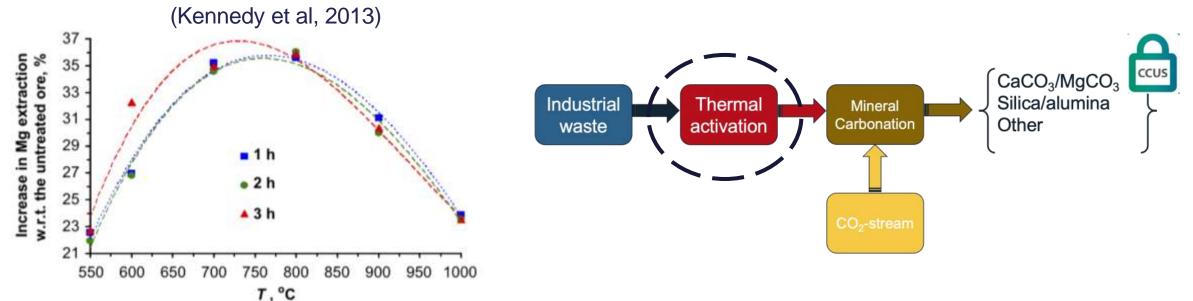
What is Mineral Carbonation?

• It is a naturally occurring process whereby certain silicates convert to carbonates absorbing CO₂


 $MgSiO_4(s) + CO_2(g) \rightarrow MgCO_3(s) + SiO_2(s)$

- CO₂ stored in a solid form over 1000-years scale, plus formation of valuable co-products (e.g., silica, carbonates)
- Ideal candidates are mafic/ultra-mafic rocks and tailings rich in Mg and Ca
- In Australia:
 - Nickel and gold tailings well suited
 - BHP Mt Keith Nickel Mine most studied site
 - Potential = $36Mt CO_{2-eq}$ pa by 2050 (CSIRO, 2022)

Thermal Activation


- Naturally, the process occurs very slowly (years) and with a low capture rate
- Majority of the work in the field focused on accelerating kinetics, improving overall efficiency and technology scale-up
- MCi (Australian-based company) reached TRL 7-8
- Thermal Activation of serpentine-based minerals paramount to produce a highly activated materials (via dehydroxilation)

h

Thermal Activation

- Naturally, the process occurs very slowly (years) and with a low capture rate
- Majority of the work in the field focused on accelerating kinetics, improving overall efficiency and technology scale-up
- MCi (Australian-based company) reached TRL 7-8
- Thermal Activation of serpentine-based minerals paramount to produce a highly activated materials (via dehydroxilation)
- Activation window is quite narrow and temperature control is critical \rightarrow 650-700 C

Gaps

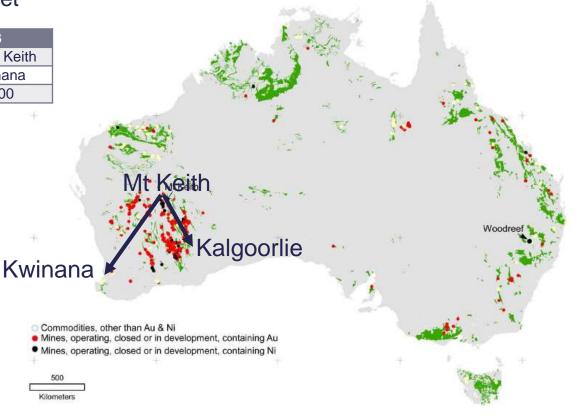
- Limited work on techno-economics and supply chain emission analysis of the thermal activation process
- No data on CST-based thermal activation and in Australian context (main works for Canadian waste tailings)

Objectives

 To provide a first-order TEA and emissions analysis of CST-based and non-CST thermal activation plant using Australian nickel mine tailings, including CST plant layout

DE-RISKING DECARBONISATION FOR HEAVY INDUSTRY

Scenarios

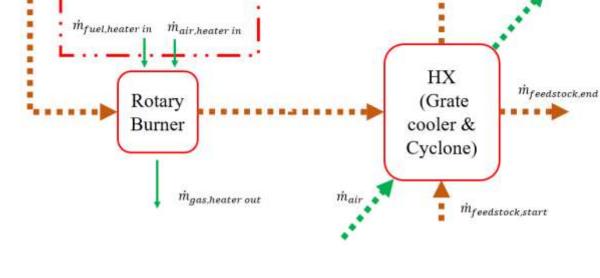

Scenarios and basic assumptions

- Use of BHP Mt Keith nickel mine tailings (Western Australia) for thermal activation
- Thermal activation and carbonation plants co-located near a CO₂ point source from an industrial hub
- Kalgoorlie (nickel hub) and Kwinana (alumina hub) as target

Scenarios	1	2	3
Location serpentine tailings	Mount Keith	Mount Keith	Mount Keith
Location activation plant and CO ₂ source	Mount Keith	Kalgoorlie	Kwinana
Distance (km)	0	500	1000

Energy requirements

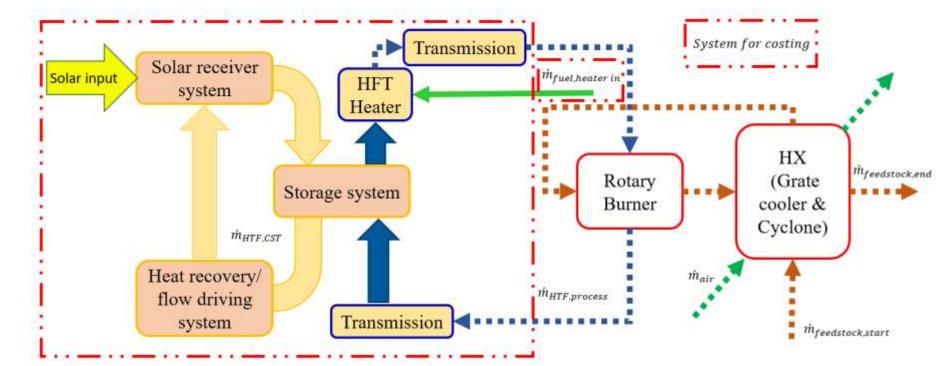
- Target activation temperature being 700 C
- Aspen process model to estimate energy requirements
 - Energy needed per ton, is 572 MJ/ton
 - 200 ton/hr \rightarrow 35 MW_{th}
 - 600 ton/hr \rightarrow 106 MW_{th}



Fuel-based options

Assumptions

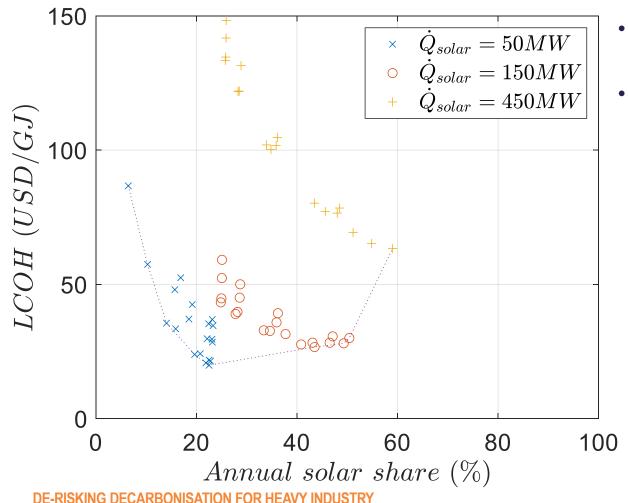
- Natural gas, low-carbon H₂ (electrolytic and from steam reforming +CCUS) considered
- Sensitivity on fuel price. Baseline NG being 12 AUD/GJ while low-carbon H₂ is 2.5 AUD/kgH₂
- Specific CO_{2-eq} emissions for fuels taken from IEA report 2022


Specific cost of fuel (USD/GJ)	3 to 30
Baseline specific cost of Natural gas (USD/GJ)	8.5
Baseline specific cost of Low-carbon Hydrogen (USD/GJ)	15 (2.5 AUD/kgH2)
Specific CO ₂ emission Natural gas (kg CO ₂ / GJ)	65.9
Specific CO_2 emission H_2 (B) (kg CO_2 / GJ)	38.7
Specific CO_2 emission H_2 (G) (kg CO_2 / GJ)	7.0°

CST-based options

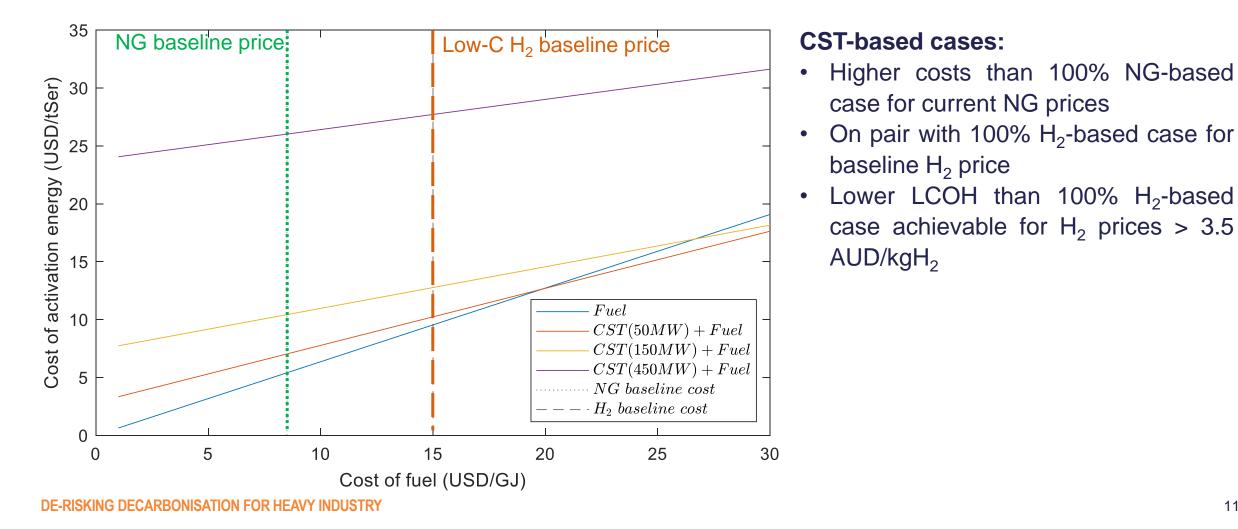
Assumptions

- CST plant layout featuring an air solar receiver, thermal storage, and back-up burner.
- Model adapted from previous works from UoA group to provide 24/7, firm supply of high-T heat to alumina calcination
- Time-series of 10 min interval for a full year simulation, 3 locations Phoenix UoA supercomputer
 - 3 solar scales of 50, 150 and 450 MW into the receiver were assessed
 - 3 solar multiples assessed with a range of storage capacity (2-32 hours), and the most suitable storage capacity was selected for each case

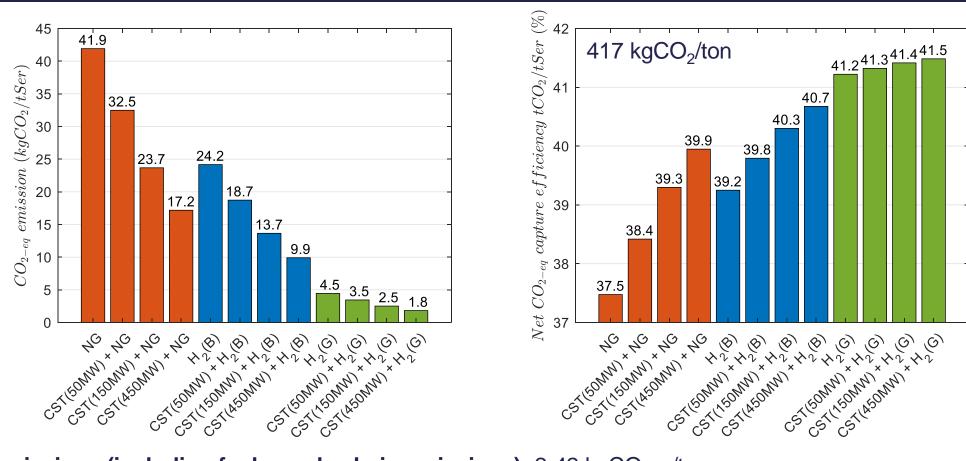


LCOH for CST-based options

• 200 ton/hr plant \rightarrow 35 MW_{th} thermal demand, 700C target temperature, Mt Keith


- Optimal CST plant layout to minimise LCOH identified for a given thermal requirement and operating temperature
- LCOH < 20 USD/GJ potentially achievable, by selecting an appropriate ratio between scales of CST plant and thermal activation plant

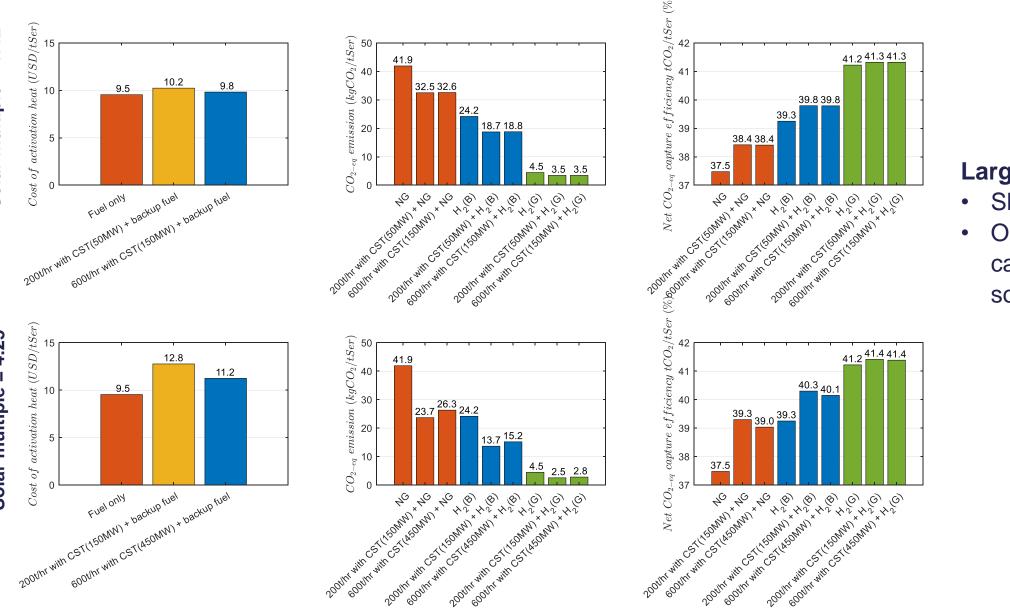
CST (MW)	Solar (%)	share	Storage (hrs)	capacity	LCOH (USD/GJ)	of	CST
50	22	2.5	2		1	9.8	
150	43	8.5	16	5	2	26.7	
450	59	0.0	32	2	6	63.4	


LCOH for CST-based vs fuel-only options

200 ton/hr plant \rightarrow 35 MW_{th} thermal demand, 700C target temperature, Mt Keith

Supply chain emissions and net CO₂ capture efficiency

CO_{2-eq} emissions (including fuel supply chain emissions): 2-42 kgCO_{2-eq}/ton

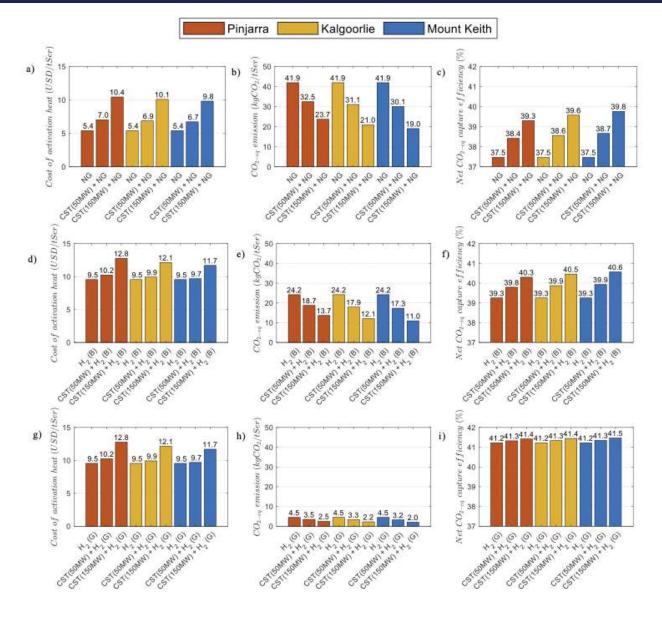

- Hydrogen-based options from green routes (H₂ and CST-H₂) → lowest emissions
- Emissions from CST-hybrid with NG similar to that of 100% H₂ produced from SMR+CCUS

H

Scale effects (fuel @ 15 USD/GJ, 200 and 600 ton/hr)

Solar multiple = 1.42

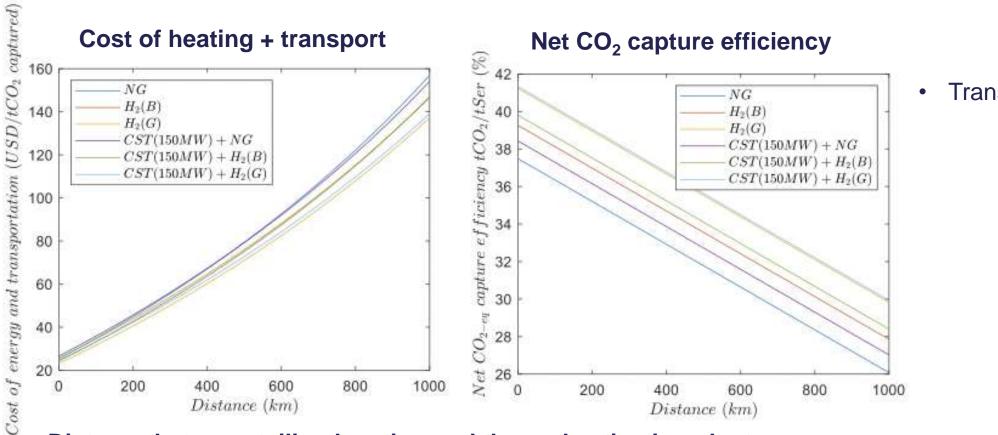
Solar multiple = 4.25



Larger scale:

- Slightly lower LCOH
- On pair with fuel-only case but with higher solar share

Location effects



DNI Mt Keith > DNI Kalgoorlie > DNI Kwinana

CST Scale (MW)	Location	Pinjarra/ Kwinana	Kalgoorlie	Mount Keith
	DNI (kWh/m2 year)	2275	2615	2856
50	LCOH (USD/GJ)	19.9	17.3	15.8
	Solar share (%)	22.5	25.9	28.3
150	LCOH (USD/GJ)	26.7	23.2	21.2
	Solar share (%)	43.5	50.0	54.6
450	LCOH (USD/GJ)	63.4	55.2	50.5
	Solar share (%)	59	67.9	74.1

Impact of transport on cost and net capture efficiency

• Transport by truck (diesel)

Distance between tailing location and thermal activation plant:

- By far the main variable influencing both cost and net CO₂ capture efficiency
- Net CO₂ capture efficiency reduces by about half for a 1000 km distance

Conclusions

The key outcomes from this study are as follows:

- A potential, attractive business case for CST: use of CST as major source of heat avoids reduction in the net CO₂ sequestration efficiency of some 10% in comparison with fuel-only cases (due to avoidance of CO₂ emissions associated with fuel supply chain). By selecting an appropriate ratio between scales of the CST system and the thermal activation plant, the overall cost of heating for a CST-hybrid plant is similar to that of fuel-only cases, but with lower CO₂-equivalent emissions
- Role of CST in a thermally assisted CCUS process: the solar route can provide the heat required to sustain
 activation of serpentine tailings for CO₂ mineral carbonation processes. An indirect (with the solar heat collector
 system being different from the thermal activation device), hybrid (CST with back-up burner and thermal storage)
 approach was identified as a potential, preferred route to achieve 24/7 continuos heat supply while retaining fine
 tuning of activation temperature process
- **Distance between tailings and thermal activation plant**: by far the main variable impacting on the feasibility and viability of the process, both from a technical and economic perspective

DE-RISKING DECARBONISATION FOR HEAVY INDUSTRY

Thank you!

AusIndustry Cooperative Research Centres Program