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@ ASTRI demonstration particle receiver

(a) Solar Field 2 with particle (b) CAD model of particle (c) CAD model of particle (d) Particle falling test
system at CSIRO Newcastle system with cooler receiver (casing removed)



@ ASTRI demonstration particle receiver

« A 500kW packed-bed heat ,/f,/]
exchanger for cooling the f:c':"i':r \ ! §
pa rticlc_as for two-bin el '-_‘_"_za,)&; o1 screw
operation (left) has been : conveyer
installed

* Experiments considered in
the present work (May 2022 <€
to March 2023) used single-
bin operation (right) where
particles are recirculated (a) Two-bin operation with
without cooling particle cooler

cooler \

(b) Single-bin operation
(present work)




@ Experiment data

Key parameters required for
computational rebuilding are
recorded during experiments:
o Particle temperature at
inlet and outlet
o Particle mass flow rate
o DNI
o Heliostat field utilisation

Typical day involves operating the
receiver for multiple ~1hr runs
with breaks in between

Outlet temperatures reached up
to 700°C with AT = 100°C

Goal of present work is to rebuild
experiments with Heliosim and
compare with the measured data
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@ Physical modelling

* Heliostat field optics and receiver heat transfer model created using CSIRO’s Heliosim software [1,2]

1. D. Potter et al., AIP Conference Proceedings, Nov. 2018, vol. 2033, no. 1, p. 210011, doi: 10.1063/1.5067213.

2. D. Potter, “The Heliosim software family: modelling, design, and control tools for CST systems,” in Proceedings of the Asia Pacific Solar
Research Conference, 2022.



@ Receiver modelling

» Surface mesh -based model of receiver with front and rear sides of particle curtain
» Steady state energy balance applied to each mesh facet to solve for temperature

Casing

See detail view

Particle curtain
(front side)

Back wall

Particle curtain

Deflector plate _ (rear side)

Insulation Particle curtain

(front side)
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(a) Receiver surface mesh (b) Receiver surface mesh (c) Particle curtain and back

(12 x 103 facets) clipped in symmetry plane wall detail



@ Receiver modelling

~

/ Receiver heat transfer mechanisms

* Solar and thermal radiation heat transfer

* Convective heat loss due to ambient air flow
* Conduction through walls

* Transport of thermal energy by particle
N\ el el \ / Particle curtain model \
* Divided into multiple vertical “channels”
\\ with equal mass flow rate

2ee detall view > Mixing between adjacent channels is

g o assumed to be negligible

~(front side) » Drag not considered
* Constant temperature assumed through the

Reflector plate curtain thickness
* Optical properties are calculated using

: \ correlations /
»




@ Curtain optical properties .

Inlet -~

* Correlations fitted to detailed Monte Carlo ray tracing
simulations [1] for various curtain thicknesses, particle
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One-way solar absorptance
[1] A. Kumar et al., J. Sol. Energy Eng. Trans. ASME, vol. 140, no. 6, 2018, doi: 10.1115/1.4040290. at design point (2.73kg/s)



@ Curtain optical properties

* One-way optical properties at design point (2.73kg/s):
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(a) Diffuse reflectance (b) Absorptance (c) Transmittance

(average of 0.0668) (average of 0.8039) (average of 0.1292)



@ Curtain optical properties

* Particle curtain and back wall temperature distributions at design point conditions:
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(a) Particle curtain incident (b) Particle curtain (c) Back wall

solar irradiance temperature temperature



@ Mass flow rate correlation

* Designed method for mass flow a0l ;: ggg:g
rate determination was — T=400"C
measuring change in feed 3.5{ ;: 2gg:g
hopper mass over a fixed time @
interval using a load cell %3-0
* Thermal expansion issues made e
this method unreliable at high 3 2
temperatures (> 400°C) 850
e After this issue was fixed in =
2023, a correlation was made to 1.5
calculate mass flow rate as a ™
function of slide gate width and 1.01 . - . . '
particle inlet temperature [1] ? ’ ) Slige gate ?vidth (an) °

[1] G. R. Drewer, J. Kim, and D. Potter, “The Importance of Managing the Performance of Particle Lift and Flow Control Systems
in Research CST Plants to Facilitate Commercialization,” presented at SolarPACES 2023.
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@ Convective heat loss

‘Coarse-grained’ CFD-DPM simulations performed using
OpenFOAM [1]

Fixed wall and particle temperatures

Particle flow rate was varied from 5 million particles/s
(0.4 kg/s) to 30 million particles/s (2.4 kg/s)

Net convective heat loss computed as Q, + Q, - Q; — Q,

Kuruneru et al. (2022). Energy Reports, 8, 3902—-3918. https://doi.org/10.1016/j.egyr.2022.03.034
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@ Convective heat loss coefficients

* Convective heat loss
coefficients for each
receiver surface
computed from CFD-DPM
heat flux results:

B q
h_A(T—Ta)

* Correlations for
convective heat loss
coefficients as a function
of mass flow rate
determined by fitting to
CFD-DPM results using
logarithmic expressions

Convective heat transfer coefficient, h (Wim?/x)
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@ Tracking error measurements

Particle receiver

Calibration
targets
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Intensity x10-? (-)

Typical heliostat image on target just prior to calibration

procedure



@ Tracking error measurements

* 3314 calibration images acquired 07 — ;ftid( (10-_55nr11r?add} 0 vhrast+2-0 )
between November 2021 and May
2023 06
* Tracking errors greater than 10mrad
discarded (56 cases) 0.5
* Probability histogram is well >
described by a combination of 3%
multiple (3) evenly weighted E
Rayleigh distributions %3
* Multiple Rayleigh distribution model 0.2
has yet to implemented in Heliosim,
therefore tracking error is varied 01.
between 0.5 and 1.5mrad to gauge
sensitivity 0.0/

Tracking error (mrad)



@ Tracking error modelling

90.0 — effective slope error maodel

» statistical tracking error model
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@ Tracking error modelling

90.0 | — effective slope error maodel

» statistical tracking error model
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@ Tracking error modelling

— effective slope error model
» statistical tracking error model
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@ Tracking error modelling

— effective slope error model
» statistical tracking error model
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@ Tracking error modelling

— effective slope error model

» statistical tracking error model
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@ Heliostat facet modelling
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90% specular reflectance assumed
Slope error of 1.4mrad used based on analysis of surface metrology data for Solar Field 2 heliostats
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(a) Example of surface mesh constructed
from measured facet coordinates
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@ Results — 18t of May 2022
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@ Results — 18t of May 2022
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@ Results — 15t of December 2022

— Inlet
4 = Qutlet {measured) -
e Outlet {Heliosim)
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@ Results — 15t of December 2022

- Thermal output (measured)
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@ Results — 18t of January 2023
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@ Results — 18t of January 2023
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@ Results — 17t of March 2023
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@ Results — 17t of March 2023
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@ Aggregated results
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* “Measured” receiver efficiency is calculated as:
measured thermal output / simulated aperture solar flux




@ Aggregated results
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@ Conclusion

* A computational model for the ASTRI demonstration particle receiver has been developed
using the Heliosim software

* The model has been applied to rebuild single-bin experiments conducted between May 2022
and March 2023

* Reasonable agreement is observed between measurement and simulation for the timeseries
trend of receiver outlet temperature

* Significant discrepancy is found for receiver thermal output and receiver efficiency, especially
at elevated inlet temperatures (above 400°C)

* Both the measured particle mass flow rate and aperture solar flux need to be more accurately
determined to characterise the receiver performance with more confidence
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Energy
Daniel Potter
Research Scientist

+61 2 4960 6004
daniel.potter@csiro.au
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@ The Heliosim software family

A collection of libraries, plugins and applications that has been developed by the CSIRO for modelling,
design, and control of heliostat-based concentrating solar thermal (CST) systems [1, 2]

Defining features Usage
* Object-orientated implementation of core *  Provides critical tools for the design and
functionality in C++ operation of receiver experiments at CSIRO
*  GPU-accelerated Monte Carlo ray tracing with Newcastle
mesh-based models of heliostats, receivers, etc. «  Modelling capability is used in numerous
* Standalone applications with graphical and research and commercial projects
command line interfaces o Detailed performance modelling
D. Potter, et al., AIP Conf. Proc., vol. 2033, 2018, doi: 10.1063/1.5067213 of heliostat fields & receivers
D. Potter, “The Heliosim software family: modelling, design, and control tools for o LCOE & LCOH based system-level

CST systems,” in Proceedings of the Asia Pacific Solar Research Conference, 2022. T
optimisation
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