Australia's National Science Agency

Simulation of the ASTRI demonstration particle receiver during on-sun testing

Daniel Potter¹, Jin-Soo Kim¹, Sahan Kuruneru¹, and Geoff Drewer¹

1. CSIRO Energy, Newcastle, NSW, Australia

Asia Pacific Solar Research Conference 2023

Wednesday 6th of December 2023 RMIT, Melbourne Land of the Wurundjeri people of the Kulin Nations

Australian Solar Thermal Research Institute

ASTRI demonstration particle receiver

(d) Particle falling test

(a) Solar Field 2 with particle system at CSIRO Newcastle

(b) CAD model of particle system with cooler

(c) CAD model of particle receiver (casing removed)

ASTRI demonstration particle receiver

- A 500kW packed-bed heat exchanger for cooling the particles for two-bin operation (left) has been installed
- Experiments considered in the present work (May 2022 to March 2023) used singlebin operation (right) where particles are recirculated without cooling

(b) Single-bin operation (present work)

- Key parameters required for computational rebuilding are recorded during experiments:
 - Particle temperature at inlet and outlet
 - \circ $\,$ Particle mass flow rate
 - o DNI
 - Heliostat field utilisation
- Typical day involves operating the receiver for multiple ~1hr runs with breaks in between
- Outlet temperatures reached up to 700°C with $\Delta T \approx 100$ °C
- Goal of present work is to rebuild experiments with Heliosim and compare with the measured data

• Heliostat field optics and receiver heat transfer model created using CSIRO's Heliosim software [1,2]

1. D. Potter et al., AIP Conference Proceedings, Nov. 2018, vol. 2033, no. 1, p. 210011, doi: 10.1063/1.5067213.

2. D. Potter, "The Heliosim software family: modelling, design, and control tools for CST systems," in Proceedings of the Asia Pacific Solar Research Conference, 2022.

- Surface mesh -based model of receiver with front and rear sides of particle curtain
- Steady state energy balance applied to each mesh facet to solve for temperature

(a) Receiver surface mesh (12 x 10³ facets) (b) Receiver surface mesh clipped in symmetry plane

(c) Particle curtain and back wall detail

Receiver modelling

Receiver heat transfer mechanisms

- Solar and thermal radiation heat transfer
- Convective heat loss due to ambient air flow
- Conduction through walls
- Transport of thermal energy by particle advection

Particle curtain model

- Divided into multiple vertical "channels" with equal mass flow rate
 - Mixing between adjacent channels is assumed to be negligible
 - Drag not considered
- Constant temperature assumed through the curtain thickness
- Optical properties are calculated using correlations

Curtain optical properties

• Correlations fitted to detailed Monte Carlo ray tracing simulations [1] for various curtain thicknesses, particle diameters and particle volume fractions

One-way solar absorptance at design point (2.73kg/s)

[1] A. Kumar et al., J. Sol. Energy Eng. Trans. ASME, vol. 140, no. 6, 2018, doi: 10.1115/1.4040290.

Curtain optical properties

• One-way optical properties at design point (2.73kg/s):

(a) Diffuse reflectance (average of 0.0668)

Curtain optical properties

• Particle curtain and back wall temperature distributions at design point conditions:

Mass flow rate correlation

- Designed method for mass flow rate determination was measuring change in feed hopper mass over a fixed time interval using a load cell
- Thermal expansion issues made this method unreliable at high temperatures (≥ 400°C)
- After this issue was fixed in 2023, a correlation was made to calculate mass flow rate as a function of slide gate width and particle inlet temperature [1]

[1] G. R. Drewer, J. Kim, and D. Potter, "The Importance of Managing the Performance of Particle Lift and Flow Control Systems in Research CST Plants to Facilitate Commercialization," presented at SolarPACES 2023.

- 'Coarse-grained' CFD-DPM simulations performed using OpenFOAM [1]
- Fixed wall and particle temperatures
- Particle flow rate was varied from 5 million particles/s (0.4 kg/s) to 30 million particles/s (2.4 kg/s)
- Net convective heat loss computed as $Q_1 + Q_2 Q_1 Q_3$

Kuruneru et al. (2022). Energy Reports, 8, 3902-3918. https://doi.org/10.1016/j.egyr.2022.03.034

(b) 20 million particles/s (1.62 kg/s)

Convective heat loss coefficients

 Convective heat loss coefficients for each receiver surface computed from CFD-DPM heat flux results:

 $h = \frac{q}{A(T - T_a)}$

 Correlations for convective heat loss coefficients as a function of mass flow rate determined by fitting to CFD-DPM results using logarithmic expressions

(a) Particle curtain (single-sided area)

(b) Back wall

(d) Deflector plate

Tracking error measurements

Typical heliostat image on target just prior to calibration procedure

Tracking error measurements

- 3314 calibration images acquired between November 2021 and May 2023
- Tracking errors greater than 10mrad discarded (56 cases)
- Probability histogram is well described by a combination of multiple (3) evenly weighted Rayleigh distributions
- Multiple Rayleigh distribution model has yet to implemented in Heliosim, therefore tracking error is varied between 0.5 and 1.5mrad to gauge sensitivity

0 mrad

0.5 mrad

1.0 mrad

1.5 mrad

2.0 mrad

- 90% specular reflectance assumed
- Slope error of 1.4mrad used based on analysis of surface metrology data for Solar Field 2 heliostats

Results – 18th of May 2022

Results – 18th of May 2022

Results – 15th of December 2022

Results – 15th of December 2022

Results – 18th of January 2023

Results – 18th of January 2023

Results – 17th of March 2023

 * "Measured" receiver efficiency is calculated as: measured thermal output / simulated aperture solar flux

- A computational model for the ASTRI demonstration particle receiver has been developed using the Heliosim software
- The model has been applied to rebuild single-bin experiments conducted between May 2022 and March 2023
- Reasonable agreement is observed between measurement and simulation for the timeseries trend of receiver outlet temperature
- Significant discrepancy is found for receiver thermal output and receiver efficiency, especially at elevated inlet temperatures (above 400°C)
- Both the measured particle mass flow rate and aperture solar flux need to be more accurately determined to characterise the receiver performance with more confidence

Thank you

Energy

Daniel Potter Research Scientist

+61 2 4960 6004 daniel.potter@csiro.au

The Heliosim software family

A collection of libraries, plugins and applications that has been developed by the CSIRO for modelling, design, and control of heliostat-based concentrating solar thermal (CST) systems [1, 2]

Defining features

- Object-orientated implementation of core functionality in C++
- GPU-accelerated Monte Carlo ray tracing with mesh-based models of heliostats, receivers, etc.
- Standalone applications with graphical and command line interfaces
- 1. D. Potter, et al., AIP Conf. Proc., vol. 2033, 2018, doi: 10.1063/1.5067213
- 2. D. Potter, "The Heliosim software family: modelling, design, and control tools for CST systems," in Proceedings of the Asia Pacific Solar Research Conference, 2022.

<u>Usage</u>

- Provides critical tools for the design and operation of receiver experiments at CSIRO Newcastle
- Modelling capability is used in numerous research and commercial projects
 - Detailed performance modelling of heliostat fields & receivers
 - LCOE & LCOH based system-level optimisation