

A STUDY ON THE TOLERANCE OF PEROVSKITE SOLAR CELLS

UNDER PROTON RADIATIONS

Dang-Thuan Nguyen (Thuan)

Email: dangthuan.nguyen@anu.edu.au

Perovskite solar cells

- High power conversion efficiency
- Simple and low cost solution-based processes
- High specific power (power per weight)
- High tolerance under high energy particle radiations

ANU School of Engineering | A Study on the Tolerance of Perovskite Solar Cells under Proton Radiations

Unstable at ambient condition (oxygen and moisture)

Why space application?

Price optimization for commercialization

• Unstable with oxygen and moisture

- High tolerance under particle radiations
- High PCE
- High power per weight

Transportation cost

High energy particle radiations

Cosmic rays: γ , e⁻, **p**⁺, β ⁺...

Among them, p+ is the main source of damage due to abundance and energy (mass)

Defect creation within PSC's functional layers

→ This work will focus on defect creation and efficiency degradation under proton radiation

Simulation of defect creation within perovskite

- SRIM simulation for defect production profiles
- COMSOL simulation for JV-curves (with additional defects from SRIM)

For detail, please see Nguyen, D.T. et al. (2023), Adv. Energy Sustainability Res. 2300085 ANU School of Engineering | A Study on the Tolerance of Perovskite Solar Cells under Proton Radiations

Simulation of efficiency degradation

J-V changed under 10MeV proton radiation

Experimental setup

- 10MeV proton radiation
- Total irradiation area is 20x20mm which overscans the sample's size of 12.5x14mm
- Flux 1e9 p/cm2.s to avoid heating
- Fluence: 1e12, 1e13, 1e14 p/cm2; in which 1e14 p/cm2 equivalents to ~5.5 years in LEO or ~100 years in GEO ^(*)

(*) Calculated based on 10 MeV proton equivalent dose, source: Brandon K. Durant et al. ACS Energy Letters 2021, 6, 7, 2362-2368

Samples including:

2 cells, 2 films, and one ITO glass for each condition

Reference SEM

1e12 p/cm² SEM

PL

J-V measured after radiated

Simulation vs. Experiment

Conclusion

- → Mechanical damage and ions invasion into next layers after being irradiated
- → Samples remain 89% of their initial efficiency after ~100 years in GEO
- Experiment well matches simulation results
- Further study in space applications: **low light & low temperature (deep space)**

THANK YOU!

Contact Us

<u>Dang-Thuan Nguyen^{1*}</u>, Anh Dinh Bui¹, Khoa Nguyen¹, Daniel Walter¹, Klaus Weber¹, Thomas White¹, The Duong¹

School of Engineering, The Australian National University

Email ^(*): <u>dangthuan.nguyen@anu.edu.au</u> (D-T. Nguyen)

(Paper under preparation)

Supporting slide

Structure	Energy	Fluence	Initial effi.	Remaining	Ref.	
ITO/TiO ₂ /MAPbl ₃ /P3HT/Au	150keV	1e12	4.8%	95%		
		1e13		80%	1	_
		1e14		70%		
ITO/c-TiO ₂ /mp-TiO ₂ /MAPbI _{3-x} Cl _x /P3HT/Au	50keV	1e12	4.8%	100%	2	
		1e13		104%		
		1e14		110%		
ITO/polyTPD/PFN- Br/FA _{0.8} Cs _{0.2} Pbl _{2.4} Br _{0.6} Cl _{0.02} /C60/SnO _x /ZTO/ITO/Al ₂ O ₃	50keV		5.6%	77%	3	
	300keV	1e12	5.8%	147%		[1
	2.5MeV		5.4%	117%		4
ITO/SnO ₂ /Cs _{0.15} FA _{0.85} Pbl ₃ /PTAA:Spiro/Au	7MeV	1e13	16.3%	48%	4	[2
ITO/SnO ₂ /Cs _{0.15} FA _{0.85} PbI ₃ /PTAA/Au			14.9%	57%		v
ITO/SnO ₂ /Cs _{0.15} FA _{0.85} Pbl ₃ /PTAA:C8BTBT/Au			18.0%	57%		[3
ITO/polyTPD/PFN/FA _{0.6} Cs _{0.3} DMA _{0.1} Pbl _{2.4} Br _{0.6} /LiF/C60/PEIE/	68MeV	2e12	15.6%	97%	5	
AZO/ITO/PEDOT:PSS/FA _{0.75} Cs _{0.25} Sn _{0.5} Pb _{0.5} I ₃ /C60/BCP/Au		1e13		94%		[2
ITO/PEDOT:PSS/MAPbl ₃ /PC61BM/BCP/Ag	68MeV	1e12	4.7%	121%	6	E
ITO/SnO ₂ /Cs _{0.1} FA _{0.9} Pbl ₃ /Spiro/Au	10MeV	1e12	24.1%	99%	This	[5
		1e13		98%		2 [4
		1e14		89%		N

[1] Y. Miyazawa et al., 2015 IEEE
42nd Photovolt. Spec. Conf. PVSC
2015, pp. 4–7, 2015.
[2] Y. Miyazawa et al., iScience,
vol. 2, pp. 148–155, 2018.
[3] B. K. Durant et al., ACS Energy
Lett., vol. 6, no. 7, pp. 2362–
2368, 2021.
[4] Tang, S. et al., (2023), Adv.
Energy Mater., 13: 2300506.
[5] F. Lang et al., Adv. Mater., vol.
28, no. 39, pp. 8726–8731, 2016.
[6] . V. Brus et al., Adv. Electron.
Mater., vol. 3, no. 2, 2017.