Optimising Weather Data Reference Periods

Enhancing Building Simulation Climate Data in a Changing Climate

2023 Asia-Pacific Solar Research Conference

7 December 2023

Presenter: David Ferrari

Authors Louise Patterson, David Ferrari, Huey Jean Tan and Trevor Lee

Climate Files for Building Simulations

- Typical climate files consist of one year's worth (8,760 values) of various meteorological parameters, e.g. air temperature, humidity, solar radiation
- Reference Meteorological Year (RMY) data is built by concatenating the most typical historical months. Importantly, this requires selecting an appropriate reference period
 - Reference periods are typically at least 10 years
 - World Meteorological Organization uses a 30 year reference period¹
 - CSIRO uses a 25 year reference period (1990 to 2015)

¹ Trewin, B, 2007, '*The Role of Climatological Normals in a Changing Climate*', World Meteorological Organization.

Climate Change

- Long-term global warming trend
 - > 2015 to 2022 are the eight warmest years on record
 - 2023 expected to be the warmest year yet
 - Shifts in temperature and precipitation, and greater incidence of extreme weather events
- To what extent can historical weather data represent future climate?
- Within the context of a warming climate, conventional reference periods might no longer accurately represent the future climate at a given location
 - In this work, we considered shorter, more recent reference periods constituting the past 15 full years (2008-2022)

Temporal Analysis - Methodology

- Considered dry bulb temperature, dew point temperature, relative humidity, wind speed, GHI, and DNI
- Took monthly averages for each parameter using reference periods of 1990-2022 (33 years), 2008-2022 (15 years), 1990-2015 (CSIRO - 25 years)

Temporal Analysis - Results (Sydney)

- Most notable differences observed for dew point temperature, wind speed, and DNI
 - 1990-2015 vs 2008-2022 annual averages: rise in dew point temperature of 0.38°C, rise in wind speed of 6.64%, and decrease in DNI of 7.36%
 - 1990-2022 vs 2008-2022 annual averages: rise in dew point temperature of 0.24°C, rise in wind speed of 5.77%, and decrease in DNI of 5.78%

Temporal Analysis - Results (Sydney)

- Differences in dew point temperature, wind speed, and DNI for 2008-2022 vs other reference periods were notable for most months
- Slight increases in 2008-2022 dry bulb temperature and relative humidity, and a decrease in GHI compared to other reference periods
 - Differences tended to be greater for Summer and Spring months

Sydney Monthly Average DBT 1990-2022

Sydney Monthly Average AMC 1990-2022

Melbourne Monthly Average DBT 1990-2022

Melbourne Monthly Average AMC 1990-2022

Examining HVAC Energy Consumption -Methodology

- Sydney weather data (1990-2022) from BOM processed in in-house software ClimateCypher
- Considered 3 archetypical buildings, compliant with the current NCC: a 3storey office building, a 10-storey office building, and a ground-level supermarket
- Analysed HVAC heating, cooling, and total energy consumption by simulating the processed data and building models in EnergyPlus

Examining HVAC Energy Consumption -Results

55.7 12.0 13.0

Annual Energy Consumption for Cooling of Three

Building Archetypes in Sydney (1990-2022)

Annual Total HVAC Energy Consumption of Three Building Archetypes in Sydney (1990-2022)

- Trend of decreasing heating demand
- Trend of rising annual average cooling demand and total HVAC energy usage
- Cooling demand from 2015-2019 was relatively high, but there is a notable 8,79% reduction from 2019-2022

Examining HVAC Energy Consumption -Results

Average Consumption		
1990-2022	1990-2008	2008-2022
398,400 kWh	396,400 kWh	400,400 kWh

Conclusions

- Notable differences in critical meteorological elements within the recent 2008-2022 period compared to the older 1990-2022 and 1990-2015 reference periods
- > Shifts in building cooling and heating demand observed over the past decades
- Traditional reference periods may fail to adequately represent the changing climate
- Need for reliable and up-to-date weather data that more accurately characterises the climate in which buildings will operate
 - > Achievable through frequent updates and/or a shorter measurement period.

Proposed Next Steps

- Urgent updates to the de facto "industry standard" RMY datasets
- Continued monitoring of climate trends
- Investigation of the annual variations and timing of peak cooling loads, and how these may vary with climate change
- RMYs for deep-plan & shallow-plan buildings, solar PV, moisture management...
- eXtreme Meteorological Year (XMY) climate files
 - ▶ P01, P10, P90, and P99 data \rightarrow weather that would be expected 1%, 10%, 90% and 99% of the time in a given period
 - Understanding building energy performance in an extreme year
 - Consider that the reference period for XMY (extremes) might differ from RMY (norms)

Thank You!

www.exemplary.com.au