

School of Photovoltaic and Renewable Energy Engineering

Can Copper be an alternative strategy of front contact for GaAs-based III-V solar cells?

Mengdi Liu, Udo Roemer, Alison Lennon, N.J. Ekins-Daukes

7 December 2023

Background

CMP: chemo-mechanical polishing

- Front metallization costs: about US\$ 4/Wdc, **10% of total costs**.
- Prevailing metallization approaches have prioritized performance over cost.

Copper?

- High conductivity $(5.8 \times 10^7 \text{ S m}^{-1})$;
- Low material cost (below US\$10/kg);
- Low processing cost (plating);
- US\$4.00/ Wdc ➡ US\$0.07/ Wdc
- Fast diffuser in GaAs (diffusion coefficient 10⁻⁹ cm²/s at 100°C);
- Introduce trap levels in the bandgap;
- Limited researches on Cu-plating technology for III-Vs;

Motivation

Reducing the metallisation costs of III-V solar cells but without sacrificing efficiencies

- Improved understanding of the metallurgy associated with the different interfaces in Cu-plated contacts;
- Demonstrations of industrially-feasible Cu-plated metallisation processes.

Outlines

- I. Copper diffusion barrier layer investigation;
- II. Copper plating development.

Accelerated Ageing Test

- Temperature-depend diffusion
- Temperature accelerated tests:
- Arrhenius law

$$\frac{t_{\rm op}}{t_{\rm acc}} = \exp\left[\frac{E_{\rm a}}{k}\left(\frac{1}{T_{\rm op}} - \frac{1}{T_{\rm acc}}\right)\right]$$

 $(D = D_0 \exp(-E_a/kT))$

Activation energy Ea ranging from 0.9-1.5eV for CPV III-V solar cells

T _{acc}	t _{acc}	T _{op}	t _{op}	If assuming 5h per day
300 °C	0.5 h	80 °C	42559.3 h	23.3 years
300 °C	0.5 h	110 °C	4200.9 h	2.30 years
acc: accelerated condition	op: operating condit	ion		

Ea=0.9eV

[5] N. Núñez, J. González, M. Vázquez, C. Algora, and P. Espinet, Progress in Photovoltaics: Research and Applications, 2013.

[6] N. Nuñez, M. Vazquez, V. Orlando, P. Espinet-González, and C. Algora, in Progress in Photovoltaics: Research and Applications, 2015.

[7] P. Espinet-González et al., in Progress in Photovoltaics: Research and Applications, 2015.

Copper Barriers

- Barrier performance qualification conditions: no heavy Cu penetration after annealing at 300 °C for 30min;
- Deposition method: e-beam evaporation.

	Structure
n-GaAs	Pd10nm/Ge150nm/Cu 150nm
p-GaAs	Pt 5nm/Ti10nm/Pt 60nm/Cu 150nm

For p-GaAs

300°C 1min

300°C 30min

For n-GaAs

Cu 150nm	
Ge 150nm	
Pd 10nm	
n-GaAs epitaxial layer (N _D >10 ¹⁸	cm ⁻³

Copper Plating

Voids Control

Possible reason:

Defects => Fast route

X Additional cleaning process

(wet chemical cleaning, plasma etching)

Voids Control

Possible reason:

- Kirkendall effect
- Ni seed layer

Specific Contact Resistance

Conclusion

Copper can be front contact for GaAs-based III-V solar cells:

- Pd/Ge/Cu and Pt/Ti/Pt/Cu evaporated metal schemes can achieve a low specific contact resistivities in the order of 10⁻⁵ Ω cm² and prevent penetration after 30 min tests.
- Unbalanced diffusion rate between Cu and adjacent metal
 voids, and Ni can reduce Kirkendall effects;
- Specific contact resistance for the **plated contacts** were found similar to or lower than those of the comparative **evaporated contact** structure.

Mengdi Liu

mengdi.liu@unsw.edu.au

DIMENT

stralian Government stralian Renewable Energy Agency

Preliminary results for cells

