

Flexible Seasonal Operation of a Community Battery to Align with Community Expectations

Patricia Wang-Zhao

Battery Storage and Grid Integration Program The Australian National University

Battery Storage and Grid Integration Program An initiative of The Australian National University

Challenge: Aligning industry and community expectations around battery operation

- Federal govt. has funded installation of over 400 batteries
- Both battery operators and community stakeholders wish to maximise their benefit
- Trials to inform how different operating scenarios fulfil different stakeholder requirements

Community and Operator Expectations

Community	Networks
Cost reduction	Grid Stability
Emissions Reduction	Grid Reliability
Self-sufficiency	Integration of DER
Autonomy	Innovation
Independence	

Methodology

- In-house battery optimisation algorithm and power flow analysis algorithm
 - Multi-objective optimisation
- Network of 55 households with 100% solar penetration
- 200kWh battery located in middle of feeder
- Canberra NextGen data
- Assume 3 discrete operating modes: Solar Soak, Cost Minimisation, Balanced

Evaluation Metrics

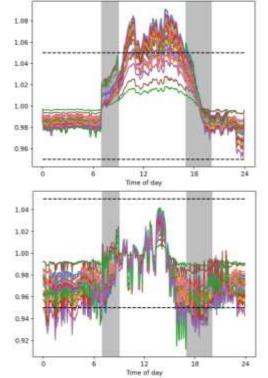
Voltage

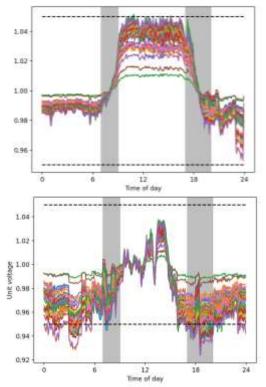
• SSS – Solar Self Sufficiency

$$SSS = 1 - \frac{\text{community imports}}{\text{community load}}$$

SSC - Solar Self Consumption

$$SSC = 1 - \frac{\text{community exports}}{\text{community solar generation}}$$

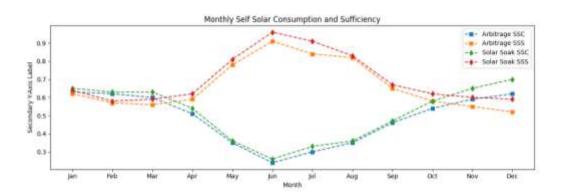

Financial


Summer

Winter

Cost minimisation/ Arbitrage

Solar Soaking



Seasonal Operation

Algorithm	w1	w2	w3
Arbitrage Only	0	1	1
Solar Soak Only	100	1	0
Balanced	1	1	1

Algorithm	SSC	SSS
Arbitrage Only	0.61	0.44
Solar Soak Only	0.7	0.55
Balanced	0.45	0.62
Hybrid	0.67	0.50

Proposal: Introduce strong seasonality

 Align battery operation with solar characteristics

> Yarra Energy Foundation Battery in North Fitzroy, Victoria with mural entitled 'Set the controls to harness the sun' by artist Hayden Dewar.

Conclusion and Future Work

- Conclusion
 - Adapting battery operating algorithms to align with seasonal characteristics could be a good way to trade-off between contrasting expectations
 - Need tariff that greater rewards solar soaking in summer
 - Improvements include voltage management benefits, community solar utilisation, and financial
- Future Work
 - Repeating with larger network, and over a longer time frame
 - Including Inverters, V2G, HB

An initiative of The Australian National University

THANK YOU Questions?