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Solar PV: Exponential Growth

Share of electricity production from solar, 2022

Global solar PY market outiook update O4 2031 T v,

Global solar PV installations will grow at an annual average of 8% from 2021 to 2030

o Annual solar PV installations by region, 2021.2030 Solar PV installations by regional share, %
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« PV warranties are usually for 25-30 years.

« Design, quantification and reliability standards have been highly dependent on the historical performance.

» Climate change and evolving operation strategies might accelerate module degradation.

1.  https://ourworldindata.org/grapher/share-electricity-solar 2 @
2. All I want for Christmas is 400 GW of solar installed in 2023, PV Magazine 2022, https://pv-magazine-usa.com/2022/12/23/all-i-want-for-christmas-is-400-gw-of-solar-installed-in-2023/ o L
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How can PV modules degrade?

Manufacturing & Installation Packaging
Manufacture QC Transportation Mounting AR-coating Discoloration Breakage Delamination Corrosion
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Severe weather events Interfaces
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Impacts of Module Degradation
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Research Gaps: Degradation Modelling

» Accelerated tests and lab experiments

 Site analysis year-to-year approach through performance
modelling

» Linear total degradation
» Most literature discusses degradation for mono-Si modules
__Linear Degra
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Jordan, D., Wohlgemuth, J., Kurtz, S., 2012. Technology and Climate Trends in PV Module Degradation. 27t European hotovoltaic Solar Energy Conference and Exhibition
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Weighted Average Degradation Rate of mono-Si Modules
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» Non-linear degradation rate
Considers only delamination, encapsulant discoloration, internal circuit failure and cell ribbon corrosion
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Poddar, S., Rougieux, F., Evans, P. J., Kay, M., Prasad, A. & Bremner, S. (2023). Accelerated degradation of photovoltaic modules under a future warmer climate. Progress in Photovoltaics:
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Research Gaps: Modelling Framework
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» Lack of arobust modelling framework that considers physics-based models, lab test and accelerated tests

Springer, M., Jordan, D. C. & Barnes, T. M. (2023). Future-proofing photovoltaics module reliability through a unifying predictive modeling framework. Progress in Photovoltaics: Research and Applications 31, 546-553 7 @ YYOREY



Research Goals for this project

 Create a simplified method to access and identify the meteorological stressors
1. Pre-processing data to include all the missing variables like DNI, DHI, UV, etc.

« Create a modelling framework that is able to calculate degradation based on physics-based
models, laboratory tests and accelerated tests.

 Can span across different bill of materials and technologies.
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Methods

Climate
Data PV Module PV system
Processing Database specifications
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2. Power loss
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4. Failure Rate
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Climate Stressors

UV radiation

Relative Humidity
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Analysis Period: 1985-2014




Photo-Degradation Mechanism

* Photo-Degradation mainly occurs due to UV radiation

* also dependent on humidity.

E
= A X(1 X -
kp p<(UV) ( + Thess )exp( K X Tm)

Ap : pre-exponential constant;
Ep : activation energy;

Kg: Boltzmann Constant;
rh.g : effective RH
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» Tropical regions are the highest affected by photo-degradation degradation mechanism.

» Desert regions have relatively lower photo-degradation rates due to lower levels of humidity.
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Encapsulant Discoloration

<l T T T m
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Encapsulant discoloration = mean rate *

Ky: hydrolysis degradation rate; Kp: Photo degradation

* Photo-Degradation and Hydrolysis are the
main degradation mechanisms that lead to

encapsulant discoloration

» Tropics show higher encapsulant discoloration.

* India, China, north Australia, central Africa,

northern SA are highly affected by this mode.

(1+ky)(1+kp)—1

(1 + kH—base)(1 + kP—base) —1
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Accelerated Test

« Acceleration Factor between the rate of degradation of a modelled environment versus a modelled controlled environment.

« |f the AF=25 then 1 year of Controlled Environment exposure is equal to 25 years in the field.
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» Higher AF = Longer time to degrade
* Lower AF = Faster degradation

= = e o = = = = = =
Faster <mm—m——— >
0 5 10 15 20 25 30 35 40 45 50
(unitless)
- UV =80 W/m?
Modelled Control Conditions: Chamber Temp = 80 °C 13 @ UMN§'
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Sensitivity Analysis

Degraded vs Baseline System Power Output: Encapsulant Discolration Degraded vs Baseline System Power Output
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Summary and Outlook

ADVANTAGES CHALLENGES
* Robust Framework to model degradation « Each degradation mode depends on the specific climate type
* Non-linearities in the degradation modes * modes are completely dependent on either lab tests or visual inspection
* Modelling framework extends beyond PR modelling » Observational data for model validations
CURRENT STATUS l FUTURE WORK >
I
I - -
W Modelling Complex Failure Rate Lifetime
Proof of Concept J P _ Predicti
Wl Degradation Modes Analysis rediction
» Weather dependent :
* Physics based models
» Accelerated Tests '
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